Review Article

“INDOLE” A VERSATILE NUCLEUS IN
PHARMACEUTICAL FIELD

Srivastava, Anupam*, Pandeya, S.N.

Department of pharmacy,
Saroj Institute of Technology & Management, Sultanpur road,
Lucknow, 226002

Abstract: (The indole nucleus is found to be very active nucleus in pharmacy field as several natural alkaloids having indole as their basic ring are found to be therapeutically active agents. In the recent years a lots of synthetic drugs have been synthesized & found to be promissing anticancer, antimicrobial, anticonvulsants, & antidiabetic agents. In the present review the several newer activities have been concluded as Liver x receptor (lrx) agonist, Tyrosin kinase inhibitor, Hepatoprotective, Antiviral, Melanotonin analogus etc.)

Keywords: -(Indole, Isatin, Anticancer, Antiviral, Anticonvulsant)

INTRODUCTION

The name indole is portmanteau of the words indigo and oleum, since indole was first isolated by treatment of the indigo dye with oleum. Indole chemistry began to develop with the study of the dye indigo. Indole is a benzopyrrole in which the benzene and pyrrole rings are fused through the 2- and 3-positions of the pyrrole nucleus. The indole ring is also found in many natural products such as the indole alkaloids, fungal metabolites and marine natural products.\(^1\)

Indole derivatives are found to contain several biological activities those including antimicrobial, antibiotic, anti-inflammatory, analgesic, anticonvulsant, antimalarial,

*Author for Correspondence

Email: anupamsri311286@gmail.com
anticancer, antiulcer, & Antileishmanial, contraceptive, antioxidant etc. The derivatives are also found to have agonistic effects on several receptors such as Liver x receptor, 5-HT$_{1D}$ receptor etc.

BIOLOGICAL ACTIVITIES

ANTIMICROBIAL ACTIVITY

- Moreau et al synthesized a series of indolin-2-one derivatives substituted in the 3-position by an aminomethylene group bearing either an ornithine or a lysine residue. (1) The antibacterial activities were tested against two Gram-positive bacteria Bacillus cereus and Streptomyces chartreusis, a Gram-negative bacterium Escherichia coli and a yeast Candida albicans.\[2\]

- Pandeya et al synthesized Schiff bases of isatin and 5-methyl isatin with sulphadoxine. The piperidino methyl compounds (2) were found to be the most active ones among all compound preperered. Compounds were active against Candida albicans, Candida neoformis, Histoplasma capsulatum, Microsporum audounii and Trichophyton mentagrophytes.\[3\]

- Kumar et al synthesized a series of 2-phenyl sulpha/substituted indoles (3) by the interaction of sulpha/substituted anilines and phenacyl halide. The newly
synthesized compounds were tested for antibacterial and anti-inflammatory activity.\[^4\]

\[
\text{X} = \text{Cl, F, NO}_2, \text{C}_6\text{H}_5\text{SO}_2\text{NH}_2
\]

ANTI-INFLAMMATORY ACTIVITY

- Kumar *et al* synthesized a series of new substituted azetidinoyl and thiazolidinoyl-1,3,4-thiadiazino (6,5-b) indoles (4) and tested for anti-inflammatory activities. Anti-inflammatory against carrageenan induced rat’s paw oedema.\[^5\]

\[
\text{R} = \text{C}_6\text{H}_5, \text{4-ClC}_6\text{H}_4, \text{OCH}_3\text{C}_6\text{H}_4, \text{4-OHC}_6\text{H}_4
\]

- Amir *et al* prepared and screened for the biological activities of some 4-(1\(^H\)-indol-3-yl)-6-phenyl-1,2,3,4-tetrahydropyrimidin-2-ones/thiones (5) as potent anti-inflammatory agents.\[^6\]

\[
\text{R}= \text{phenyl, 4-chlorophenyl,2,4-dichlorophenyl,4-methylphenyl,3,4-dimethylphenyl}
\]

- Mana *et al* synthesized a series of novel derivative of indole, containing the thiazole and isoxazole moieties, (6) by isatin and evaluated for anti-inflammatory activity. Anti-inflammatory activity was performed by carrageenan induced oedema method. The compound showed significant anti-inflammatory activity.\[^7\]
ANALGESIC ACTIVITY

- Radwan et al. synthesized and evaluated the analgesic activity of 3-substituted indole derivatives. The Tholidine-4-one derivative (7) was found to exhibit analgesic activity.[8]

- Abele et al. synthesized isatin and indole oximes and the compound (8) was found to be the most active analgesic.[9]
ANTICONVULSANT ACTIVITY

- Pandeya et al synthesized a series of p-nitrophenyl substituted semicarbazones (9) and their anticonvulsant activities were screened against maximal electroshock (MES), subcutaneous pentylenetetrazole (scPTZ) and subcutaneous strychnine (scSTY) tests.\[10\]

\[
\begin{align*}
\text{R} & = \text{H, Cl, NO}_2 \\
\end{align*}
\]

- Siddiqui et al synthesized & evaluated the anticonvulsant activities of 2-(1H-indol-3-yl)acetyl-N-(substituted phenyl)hydrazine carbothioamides.(10) and their related heterocyclic derivatives.\[11\]

\[
\begin{align*}
\end{align*}
\]

- Kumar et al synthesized some new pyrazolinyl /isoxazolylindol-2-ones (11). These compounds were screened for their anticonvulsant activity against maximum electroshock induced seizures.\[12\]

\[
\begin{align*}
\end{align*}
\]
ANTICANCER ACTIVITY

- Liou et al synthesized a novel oral indoline-sulfonamide agent, j30 (12) exhibiting potent activity against human cancer cells in vitro and in vivo through the disruption of microtubule.\cite{13}

\[\text{Srivastava Anupam, Pandeya S.N. / “Indole” A versatile nucleus in Pharmaceutical Field.} \]

\[\text{Liou et al synthesized a novel oral indoline-sulfonamide agent, j30 (12) exhibiting} \]
\[\text{potent activity against human cancer cells in vitro and in vivo through the} \]
\[\text{disruption of microtubule.} \]

\[\text{Sigman et al synthesized and carried out the preliminary biological studies of 3-} \]
\[\text{substituted Indoles (13) accessed by a palladium-catalyzed enantioselective alkene} \]
\[\text{difunctionalization reaction. Evaluation of several of the compounds revealed} \]
\[\text{promising anticancer activity against MCF-7 cells.} \]

\[\text{Popp and Pajouhesh et al synthesized 3-o-nitrophenyl hydrazones of isatin (14) by} \]
\[\text{condensation of isatin with o-nitrophenyl hydrazine. These compounds were found} \]
\[\text{to be active intramuscularly against Walker carcinoma-256 and inactive against L-} \]
\[\text{1210 lymphoid leukaemia.} \]

\[\text{IJCPR Nov 2010 – January 2011} \]

\[\text{R}^2= \text{Ph, R}^1= \text{H (G1 phase arrest), } \text{R}^2= \text{H, R}^1= \text{COOCH}_3 (\text{G2 phase arrest}) \]

\[\text{R} = \text{H, 1-CH}_3, 1-\text{COCH}_3, 4-\text{CF}_3, 5-\text{Br}, 5-\text{Cl}, 5-\text{SO}_3\text{H etc.} \]
ANTIVIRAL ACTIVITY

Selvam et al. prepared 4-[(1, 2-dihydro-2-oxo-3H-indol-3-ylidene)amino]-N-(4,6-dimethyl-2-pyrimidin-2-yl)benzenesulphonamide and its derivatives (15, 16, 17). The related compounds were tested for antiviral activity against influenza A (H1N1, H3N2, and H5N1) and B viruses in Madin Darby canine kidney (MDCK) cell culture.[16]

![Chemical structure of compound 15](image)

<table>
<thead>
<tr>
<th>Compounds</th>
<th>R</th>
<th>R\textsubscript{1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Br</td>
<td>H</td>
</tr>
<tr>
<td>16</td>
<td>Cl</td>
<td>H</td>
</tr>
<tr>
<td>17</td>
<td>F</td>
<td>H</td>
</tr>
</tbody>
</table>

Dun Wang et al. synthesized some new derivatives of 3-ethoxycarbonyl-6-bromo-5-hydroxyindoles (18) and their antiviral activity were determined in cell culture with virus cytopathic effect assay.[17]

![Chemical structure of compound 18](image)

Methisazone (N-methyl isatin-3-thiosemicarbazone) (19) was found to be an effective compound against variola and vaccinia viruses.[18]

![Chemical structure of compound 19](image)
ANTIMALARIAL ACTIVITY

- The only indole semi-synthetic antiplasmodial compounds known are derivatives of ergolines, which are either natural compounds isolated from Claviceps purpurea (festuclavine) or semi-synthetic compounds used in clinical routine (terguride). There are two derivatives of interest: a dimeric derivative of terguride (20) and a trimeric derivative of festuclavine (21). [19]

![Trimeric derivative (21)](image1)

![Dimeric derivative (20)](image2)

ANTIARYRTHMIC ACTIVITY

- Compound R-L3 or L-364 373 [(3-R)-1, 3-dihydro-5- (2-fluorophenyl)-3-(1H-indol-3-ylmethyl)-1-methyl-2H-1, 4-benzodiazepin-2-one)] (22) is an activator of Kv7.1 channel and thus leads to hyperpolarizing effect. [20]

![Compound R-L3 or L-364 373](image3)

ANTIHYPERTENSIVE ACTIVITY

- Among the various isatin and indole oximes reported by the Abele et al compound (23) was found to contain hypotensive activity lowering the blood pressure in rats by 28%. [21]
ANTIDIABETIC ACTIVITY

- A distinct site at the monomer interface known as the indole inhibitor site. Compound (24) inhibited liver and muscle GP in the nM range in enzyme kinetics and was active in forskolin-induced, cell-based glycogenolysis in the mM range (1.9 mM).[22]

- Li et al synthesized the indole derivatives (25) which were evaluated for their insulin sensitizing and glucose lowering effects.[23]
ANTIOXIDENT ACTIVITY

- Enien et al synthesized indole-2 and 3-carboxamides (26) and evaluated their biological activities as antioxidant by chemoluminescence and electron spin response spin trapping.\(^{[24]}\)

\[
\begin{align*}
\text{R-HN} & \quad \text{O} \\
& \quad \text{X} \\
& \quad \text{X=H, R= Thiazoyl} \\
& \quad \text{indole 2-carboxamide} \\
& \quad \text{(26)}
\end{align*}
\]

- Talaz et al described the synthesis of 5,10-dihydroindolo[1,2-b]indoles (27) containing substituents such as methoxy, hydroxyl, and halogens on indeno part and their antioxidant activities were assayed by various in vitro assays.\(^{[25]}\)

\[
\begin{align*}
& \quad \text{R-HN} \\
& \quad \text{X} \\
& \quad \text{R_1= 0Me, R_2=H, R_3=H, R_4= OMe} \\
& \quad \text{(27)}
\end{align*}
\]

ANTILEISHMANIAL ACTIVITY

- Mishra et al presented a review on natural products as antileishmanial and showed the Harmaline (28) is an indole alkaloid and a potent leishmanisidal agent.\(^{[26]}\)

\[
\begin{align*}
& \quad \text{H}_3\text{CO} \\
& \quad \text{N} \\
& \quad \text{H} \\
& \quad \text{N} \\
& \quad \text{(28)}
\end{align*}
\]
ANTIFERTILITY ACTIVITY

- Chaudhary et al showed that various indole derivatives (29) act as effective antifertility agents.\cite{27}

\[
\text{Indole derivative (29)}
\]

\[
\begin{align*}
R &= \text{H, COCH, COPh, 4-COC}_6\text{H}_4\text{Cl} \\
4-\text{COC}_6\text{H}_4\text{OH, 4-CH}_3\text{CH}_2\text{N(C}_2\text{H}_5)_2 \\
R_1 &= \text{H, Ph, 4-FC}_6\text{H}_4, \text{Me} \\
R_2 &= \text{H, CH}_3\text{COOH, -CH}_2\text{CH}_2\text{NH}_2, \\
&\quad \text{-CH}_2\text{CH}_2\text{NHCOME, CH}_2\text{(NHAc)}\text{COOH} \\
R_3 &= \text{H, MeO, F} \\
R_4 &= \text{H, Cl, F}
\end{align*}
\]

HALLUCINOGENIC ACTIVITY

- Indole is the base for a diverse group of hallucinogenic agents that may be subdivided into simple indole, harmine and polycyclic derivatives. Many of the 3-substituted derivatives show potent hallucinogenic activities.\cite{28}

\[
\text{Indole (29)}
\]

\[
\begin{align*}
N &\quad R_1 \\
R &\quad R_2 \\
R_3 &\quad R_4 \\
R_4 &\quad R_4
\end{align*}
\]

<table>
<thead>
<tr>
<th>Compounds</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(30) Bufotenine</td>
<td>(CH\textsubscript{2})\textsubscript{2}N(CH\textsubscript{3})\textsubscript{2}</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>(31) Psilocin</td>
<td>(CH\textsubscript{2})\textsubscript{2}N(CH\textsubscript{3})\textsubscript{2}</td>
<td>OH</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>(32) 6-Hydroxy-diethyltryptamine</td>
<td>(CH\textsubscript{2})\textsubscript{2}N(C\textsubscript{2}H\textsubscript{5})\textsubscript{2}</td>
<td>H</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>(33) Dimethyltryptamine</td>
<td>(CH\textsubscript{2})\textsubscript{2}N(CH\textsubscript{3})\textsubscript{2}</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

IMMUNOMODULATRY ACTIVITY

- Oglufanide (34), at one time called thymogen, is a dipeptide isolated from calf thymus. The immunomodulatory properties of both the natural product and the subsequent synthetic versions have been extensively studied as agents that enhance immune function. The compound currently is undergoing clinical trials in patients infected with the hepatitis C virus.\cite{29}
ESTROGEN ANTAGONISTIC ACTIVITY

- An indole provides the nucleus for the estrogen antagonist bazedoxifene (35); not only the ring system, but also the connectivity of the benzene ring that carries the basic ether differs from earlier compounds. [29]

5-HT₃ ANTAGONIST

- Almotriptan is a indole derivative (36) and is a 5-HT₃ antagonist. [29]

TYROSINE KINASE INHIBITOR

- Semaxanib (37) is a tyrosine kinase inhibitor & has shown promising early activity against solid tumors; this compound inhibits neoangiogenisis and also shows antimetastatic activity. [29]
ANTIPARKINSON ACTIVITY

- Parkinson’s disease is conversely traceable to a deficiency of dopamine. Most treatments for that disease involve administration of compounds that make up for that deficiency. The indolone aplindore (38), acts as a partial agonists at the subclass of dopamine receptors associated with Parkinson’s. The drug is currently in the clinic for that indication. The compound also interestingly shows some promise for treating “restless leg syndrome”.[20]

5-HT\textsubscript{1D} AGONISTIC ACTIVITY

- Isaac et al synthesized a novel series of highly potent human 5-HT1D agonists (39), dimethyl-{2-[6-substituted-indol-1-yl]-ethyl]-amine.[30]

LIVER X RECEPTOR (LXR) AGONISTIC ACTIVITY

- A structurally novel liver X receptor (LXR) agonist (40) was identified from internal compound collection utilizing the combination of structure-based virtual
screening and high-throughput gene profiling. Compound increased ABCA1 gene expression by eightfold and SREBP1c by threefold in differentiated THP-1 macrophage cell lines. Confirmation of its agonistic activity against LXR was obtained since the co-factor recruitment and reporter transactivation assays.\[^{[31]}\]

\[\text{PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR AGONISTIC ACTIVITY}\]

- Mahindroo \textit{et al} synthesized and evaluated a series of indole based PPAR agonists. The compound (41) was found to be the most potent PPAR agonist with IC\textsubscript{50} = 0.050 \textmu M.\[^{[32]}\]

\[\text{CONCLUSION}\]

As the therapeutic value of indole derivatives are shown above, the indole is found to be a very versatile nucleus in the pharmaceutical field. The derivatives are very much used as anticancer, antimicrobial, antiviral, anti-inflammatory agents etc. In addition to synthetic derivatives, several natural products having indole moieties are very important, such as those including indole alkaloids which are used as antimalarial, anticancer, hallucinogenic etc.

\[\text{ACKNOWLEDGEMENTS}\]

Authors are very much thankful to librarian CDRI, Lucknow to allow us to complete the latest literature.
REFERENCES

1. www.unb.br/iq/labpseq/qo/olv/olv/about.htm-23k

Note: All rights reserved with Publisher
To buy this article www.ijcpr.com