Available online on http://www.ijcpr.com/

International Journal of Current Pharmaceutical Review and Research 2024; 16(1); 215-220

Original Research Article

A Retrospective Assessment of the Demographics and Antimicrobial Susceptibility Patterns of Lower Respiratory Tract Infections in ICU.

Uzma Raihan¹, Preeti Kumari²

¹Fellow SR Emergency Critical Care, Department of Trauma and Emergency, IGIMS, Patna, Bihar, India

²Assistant Professor, Department of Anesthesiology, NSMCH, Bihta, Patna

Received: 15-10-2023 Revised: 18-11-2023. Accepted: 20-12-2023 Corresponding author: Dr. Preeti Kumari Conflict of interest: Nil

Abstract

Aim: The aim of the present study was to assess the distribution and antimicrobial susceptibility patterns of lower respiratory tract infections over a six–month period in the medical and surgical intensive care units of a teaching hospital.

Methods: This was a retrospective study conducted at Department of Trauma and Emergency, IGIMS for a period of 6 months. This institution is an academic teaching hospital and is one of the local tertiary referral units. However, this study was restricted only to the medical and surgical ICUs. Total number of patients (medical and surgical admissions) seen at our institute during the study period was 1400; out of whom, 400 patients required intensive care. Two hundred patients were enrolled for the study after considering the inclusion and exclusion criteria.

Results: A total of 200 patients were included in the study, out of which 150 (75%) were males. Amongst different age groups, maximum patients were above 60 yrs (30%) and the least were between 18–30 yrs age group (13%). The underlying major medical conditions of the LRTI were diabetes mellitus (32%), respiratory pathology (20%), nephrological pathology (19%) and malignancy (13%); while 16% of the patients had other medical conditions, including electrolyte imbalance, hormonal imbalance, or miscellaneous causes such as poisoning. The bacteria were isolated predominantly from the tracheal aspirate (85%), compared to broncho–alveolar lavage (15%) with a statistically significant difference between them. Out of all the isolated organisms, A. baumannii, P. aeruginosa and Klebsiella were the most predominant isolates. S. aureus and Enterococcus were equal. Other pathogenic bacteria were E. coli followed by equal number of Pneumococcus and CONS. In the gram–positive isolates, S.aureus was equally susceptible to linezolid (75%) and vancomycin (75%); and 100% of the isolates of Enterococcus were susceptible to vancomycin.

Conclusion: Gram-negative pathogens were predominantly responsible for lower respiratory tract infections. Moreover, antimicrobial resistance rate was high with the most commonly used antibiotics and also to higher antibiotics such as carbapenems.

Keywords: Antimicrobial susceptibility; Intensive Care Unit; Lower Respiratory Tract Infection; Antibiotic; Resistance

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Lower respiratory tract infections (LRTI) are the infections of the trachea, bronchi and lungs. Though there is no uniform definition for LRTI, most of the definitions include pneumonia, influenza, bronchitis including acute exacerbations in chronic obstructive pulmonary disease, and bronchiolitis in this broad term. [1,2] The etiological agents of LRTI infections vary between populations and countries, depending on the difference in geography, climate, and socioeconomic conditions, associated factors of LRTI as well as their antibiotics susceptibility. [3] Community acquired pneumonia (CAP) is an acute infection of the pulmonary parenchyma occurring in a patient who has not resided in a hospital or health care facility for greater than 14 days before onset of symptoms. The initial antimicrobial management for community acquired pneumonia is usually empirical and selecting an appropriate regimen requires knowledge of the spectrum of organisms implicated in CAP locally. [4]

In addition, amongst the hospital admissions, managing LRTI in the intensive care units (ICUs) is challenging as the patients present with different diseases with varied epidemiological, clinical and microbiological aspects. Amongst hospitalized patients, the most common organisms causing LRTI are gram–negative bacteria such as Klebsiella, Escherichia coli (E. coli), Acinetobacter baumannii (A. baumannii), Pseudomonas aeruginosa (P. aeruginosa) and gram–positive organisms like Staphylococcus aureus (S. aureus) and occasionally fungi. [5,6] However, the microbiological etiology and susceptibility is variable depending on the geographical location.

The impact of antimicrobial-resistant organisms is more severe in low and medium-income countries. [7] Highly resistant strains of Gram-negative bacilli (GNB) continue to spread rapidly in hospitals causing therapeutic problems in many parts of the world, especially for developing countries because isolation facilities are not enough to admit all the patients with infections due to resistant organisms. [8,9] Recent surveillance information from the national nosocomial infection surveillance system of the Centers for Disease Control of USA showed hospital-acquired pneumonia (HAP) or commonly known as 'nosocomial pneumonia' is the most typical infection within the ICUs. [10,11] Nosocomial bacteria are multi-drug resistant that are hard to eradicate by available antibiotics.

The aim of the present study was to assess the distribution and antimicrobial susceptibility patterns of lower respiratory tract infections over a six– month period in the medical and surgical intensive care units of a teaching hospital.

Materials and Methods

This was a retrospective study conducted at Department of Trauma and Emergency, IGIMS, Patna, Bihar, India for the period of 6 months. This institution is an academic teaching hospital and is one of the local tertiary referral units. However, this study was restricted only to the medical and surgical ICUs. Total number of patients (medical and surgical admissions) seen at our Institute during the study period was 1400; out of whom, 400 patients required intensive care. Two hundred patients were enrolled for the study after considering the inclusion and exclusion criteria. The study included all patients of either gender, aged above 18 y, admitted in the medical and surgical ICUs, whose cultures were positive for LRTI. The patients with negative cultures, the patients in whom more than one species of the same organism were isolated and patients with incomplete case records were excluded from the study.

Data and Variables

The demographic data (gender and age) and the bacterial isolates were collected from the medical records using a structured data collection tool. The age was stratified into five groups, e.g., 18–30, 31–40, 41–50, 51–60 and more than 60 yrs. The bacterial isolates were documented as per the results of the region of the lower respiratory tract from which the organism was isolated, gram stain, isolate's identity and antimicrobial susceptibility. As per the records, uniform procedures were followed for sample collection, culture and sensitivity testing.

Sample Collection

The samples were kept in Cary–Blair transport medium until processed for gram staining and culture. The samples were inoculated on blood agar (with 5% sheep blood) and MacConkey agar plates. Later, they were incubated aerobically at 35°C–37°C for 24–48 h. Aseptic precautions were followed during these procedures. The identification and characterization of isolates were performed based upon gram staining and microscopic characteristics using standard microbiological methods.

Statistical Analysis

For the descriptive analysis, frequency (n) and percentage (%) were used to express the qualitative variables. The data was compared for the type and the number of isolates. To test the statistically significance in differences, either the chi–square test or Fisher's exact test was performed for the qualitative variables. When the p–value was inferior to the alpha error (5%) at 95% confidence interval, a statistical significance was considered. The data was analyzed using the Medcalc® software.

Results

Variables	N%		
Gender			
Male	150 (75)		
Female	50 (25)		
Age groups			
18-30 years	26 (13)		
31-40 years	24 (12)		
41-50 years	44 (22)		
51-60 years	46 (23)		
>60 years	60 (30)		
Underlying medical conditions			
Diabetes Mellitus	64 (32)		

Table 1: Demographic details

International Journal of Current Pharmaceutical Review and Research

Respiratory pathology	40 (20)
Nephrological pathology	38 (19)
Malignancy	26 (13)
Others	32 (16)

A total of 200 patients were included in the study, out of which 150 (75%) were males. Amongst different age groups, maximum patients were above 60 y (30%) and the least were between 18–30 y (13%). The underlying major medical conditions of the LRTI were diabetes mellitus (32%), respiratory

pathology (20%), nephrological pathology (19%) and malignancy (13%); while 16% of the patients had other medical conditions, including electrolyte imbalance, hormonal imbalance, or miscellaneous causes such as poisoning.

Organism	Tracheal aspirate	Broncho-alveolar lavage	95% Cl	P Value
A. baumannii	52 (86.66)	8 (13.34)	55.37-86.45	< 0.001
P. aerugeniosa	36 (75)	12 (25)	33.56-73.94	< 0.001
Klebsiella	40 (90.90)	8 (9.10)	62.62-92.76	< 0.001
E. Coli	20 (83.34)	8 (16.66)	26.80-83.55	< 0.001
S. Aureus	8 (100)	0	NA	0.80
Enterococcus	8 (100)	0	NA	0.110
Pneumococci	2 (50)	2 (50)	-57.34-57.34	0.550
CONS	4 (100)	0	NA	0.660
Total	170 (85)	30 (15)	63.09-80.71	< 0.001

Table 2: Bacteria isolated from the lower respirate	ory tract from ICU patients
---	-----------------------------

The bacteria were isolated predominantly from the tracheal aspirate (85%), compared to broncho–alveolar lavage (15%) with a statistically significant difference between them. Out of all the isolated organisms, A. baumannii, P. aeruginosa and Klebsiella were the most predominant isolates. S. aureus and Enterococcus were equal. Other pathogenic bacteria were E. coli followed equal number of Pneumococcus and CONS.

Antibiotic		D comuciness	Klebsiella n=44	E. coli n=24
Antibiotic		P. aeruginosa	Kleoslella II–44	E. $con n-24$
	n=68	n=48		
Amikacin	40 (66.66)	12 (25)	12 (27.27)	6 (25)
Ampicillin	0	4 (8.34)	6 (13.64)	4 (16.66)
Aztreonam	28 (46.66)	0	0	6 (25)
Cefoperazone+Sulbactam	24 (40)	10 (20.83)	16 (36.36)	8 (33.34)
Cefepime	8 (13.34)	14 (29.16)	12 (27.27)	16 (66.66)
Ciprofloxacin	10 (16.66)	24 (50)	14 (31.82)	6 (25)
Colistin	56 (93.34)	20 (4166)	40 (90.90)	22 (91.66)
Cotrimoxazole	4 (6.66)	12 (25)	14 (31.82)	12 (50)
Doripenem	14 (23.34)	30 (62.5)	32 (72.72)	18 (75)
Gentamicin	30 (50)	20 (41.66)	18 (40.90)	10 (41.66)
Imipenem	16 (26.66)	24 (50)	24 (54.54)	14 (58.33)
Levofloxacin	24 (40)	0	0	6 (25)
Meropenem	22 (36.66)	28 (58.34)	30 (68.18)	4 (16.66)
Minocycline	48 (80)	10 (20.84)	12 (27.27)	20 (83.34)
Piperacillin/Tazobactam	12 (20)	16 (33.34)	0	6 (25)
Tigecycline	58 (96.66)	12 (25)	28 (63.64)	20 (83.34)

Table 3: Susceptibility pattern of Gram-negative isolates

There were different sets of antibiotics used for different organisms, and patterns of susceptibility were obtained for different pathogens. In the gramnegative isolates, A. baumannii was most susceptible to colistin followed by minocycline and amikacin. With regard to P. aeruginosa, it was observed that only around half of the isolates were susceptible to doripenem and it was also observed that most of the isolates were resistant to all the commonly used antibiotics. Whereas, Klebsiella showed maximum sensitivity to colistin followed by doripenem, meropenem and tigecycline.

		prismely parter in or or am		
Antibiotic	S. aureus n=8	Enterococcus n=8	Pneumococci n=4	CONS n=4
Amoxiclav	2 (25)	0	0	2 (50)
Cefazolin	4 (50)	4 (50)	0	2 (50)
Cefoxitin	0	4 (50)	2 (50)	2 (50)
Ciprofloxacin	0	2 (25)	2 (50)	2 (50)
Clindamycin	2 (25)	4 (50)	2 (50)	2 (50)
Cotrimoxazole	0	2 (25)	0	0
Erythromycin	2 (25)	0	0	2 (50)
Gentamicin	0	0	0	0
Linezolid	6 (75)	6 (75)	2 (50)	4 (100)
Rifampicin	4 (50)	4 (50)	2 (50)	2 (50)
Teicoplanin	4 (50)	6 (75)	2 (50)	4 (100)
Vancomycin	6 (75)	8 (100)	2 (50)	4 (100)
	•		•	•

Table 4: Susceptibility pattern of Gram-positive isolates

In the gram–positive isolates, S.aureus was equally susceptible to linezolid (75%) and vancomycin (75%); and 100% of the isolates of Enterococcus were susceptible to vancomycin.

Discussion

Lower respiratory tract infection (LRTI) is common in an intensive care unit (ICU), with increased from 10% to 25%, and mortality from 22% to 71%. Antibiotic resistance is a crucial public health issue. The antibiotic-resistant strains of bacteria are the major problem during infection control, especially for these places where considerable resources and costs are unavailable. [1,12] Recent reports have also described antimicrobial-resistant organisms as "nightmare" bacteria that result in excessive deaths and disastrous spending. [6]

A total of 200 patients were included in the study, out of which 150 (75%) were males. Amongst different age groups, maximum patients were above 60 y (30%) and the least were between 18-30 y (13%). The underlying major medical conditions of the LRTI were diabetes mellitus (32%), respiratory pathology (20%), nephrological pathology (19%) and malignancy (13%); while 16% of the patients had had other medical conditions, including electrolyte imbalance, hormonal imbalance, or miscellaneous causes such as poisoning. This could be due to the differences in lifestyle, and in anatomic, behavioral, and socioeconomic factors between the two, which include smoking, tobacco usage, alcohol intake, and environmental exposure etc., causing decreased local immunity in the respiratory tract due to defective mucociliary clearance, mucous plugging, collapse of the airway and weakness of the respiratory muscle. [13,14] Similar results were observed in the study by Humphrey et al. [15] We observed that the elderly population was the most at risk of LRTI. Age distribution of bacteria isolates showed that patients aged more than 50 y were found to be highly susceptible to pathogenic bacteria. This could be attributed to the decreasing immunity and

pulmonary defense mechanisms, underlying chronic diseases such as malnutrition, diabetes mellitus, emphysema, uremia etc. [14] In our study, the incidence of gram-negative organisms was 88%, while only 12% were gram-positive. The results are in accordance with the study of Khan et al. [16]

The bacteria were isolated predominantly from the tracheal aspirate (85%), compared to bronchoalveolar lavage (15%) with a statistically significant difference between them. Out of all the isolated organisms, A. baumannii, P. aeruginosa and Klebsiella were the most predominant isolates, S. aureus and Enterococcus were equal. Other pathogenic bacteria were E. coli followed equal number of Pneumococcus and CONS. The results of these studies along with the current study demonstrate the increasing incidence of gramnegative pathogens causing LRTI in the ICUs. However, contrasting results were reported in a study done in Bangladesh in which it was observed that 89% were gram-positive isolates. [17] There were different sets of antibiotics used for different organisms, and patterns of susceptibility were obtained for different pathogens. In the gramnegative isolates, A. baumannii was most susceptible to colistin followed by minocycline and amikacin. With regard to P. aeruginosa, it was observed that only around half of the isolates were susceptible to doripenem and it was also observed that most of the isolates were resistant to all the commonly used antibiotics whereas, Klebsiella showed maximum sensitivity to colistin followed by doripenem, meropenem and tigecycline. Similar results were observed in a study by Parajuli et al. who reported A. baumannii was the most common respiratory pathogen in the ICU. [18] The most common isolate of our study A. baumannii, showed lower susceptibility to most of the antibiotics tested including carbapenems namely doripenem, imipenem and meropenem at 20.6%, 23.5% and 32.4% respectively. In the recent times, similar patterns of low susceptibility of A. baumannii to carbapenems have been observed globally. [19,20]

However, majority of the multi-drug resistant isolates of A. baumannii were susceptible to colistin. P. aeruginosa isolates revealed resistance to commonly used antibiotics but showed highest susceptibility to doripenem at 51.7%. Other studies in India and globally have also reported similar patterns of resistance for P. aeruginosa. [21,22] Among other gram-negative bacteria, Klebsiella and E. coli showed the highest sensitivity with colistin. Altogether, lower susceptibility was observed towards aminoglycosides, cephalosporins, fluoroquinolone and penicillin group of antibiotics. This could be due to an extensive use of these drugs in the past few years and drug resistance mechanisms such as production of enzymes, decreased uptake of drugs and efflux pumps. [23] Among gram-positive bacteria, S. aureus and enterococci were the most common isolates. These isolates demonstrated maximum susceptibility to linezolid at 75%. Similar results were observed in a study by Singh et al. conducted in North India. [24]

Conclusion

This current study provides useful information regarding the microbiology of lower respiratory tract infections occurring in the ICUs and their antibiotic susceptibility patterns. We observed that gram– negative pathogens were predominantly responsible for LRTI. Antimicrobial resistance rate was high with the most commonly used antibiotics and also to newer antibiotics such as carbapenems. It is highly recommended that large scale multi–center studies are done to collect country–level data to guide empirical therapy in this geographical area.

References

- Greene G, Hood K, Little P, Verheij T, Goossens H, Coenen S, C Butler C. Towards clinical definitions of lower respiratory tract infection (LRTI) for research and primary care practice in Europe: an international consensus study. Primary Care Respiratory Journal. 2011 Sep;20(3):299-306.
- Feldman C, Shaddock E. Epidemiology of lower respiratory tract infections in adults. Expert Rev Respir Med. 2019 Jan;13(1):63–77.
- Tchatchouang S, Nzouankeu A, Kenmoe S, Ngando L, Penlap V, Fonkoua M-C, et al. Bacterial Aetiologies of lower respiratory tract infections among adults in Yaoundé, Camer oon. Biomed Res Int. 2019;2019:1.
- Aston SJ. Pneumonia in the developing world: C haracteristic features and approach to management. Respirology. 2017;22(7):1276–8 7.
- Guzek A, Rybicki Z, Korzeniewski K, Mackiewicz K, Saks E, Chciałowski A, Zwolińska E. Etiological factors causing lower respiratory tract infections isolated from

hospitalized patients. Respiratory Infections. 2015:37-44.

- Uzoamaka M, Ngozi O, Johnbull OS, Martin O. Bacterial etiology of lower respiratory tract infections and their antimicrobial susceptibility. Am J Med Sci. 2017 Nov;354 (5):471–475.
- Thu TA, Rahman M, Coffin S, Harun-Or-Rashid M, Sakamoto J, Hung NV. Antibiotic use in Vietnamese hospitals: A multicenter pointprevalencestudy. Am J Infect Control 20 12; 40(9): 840-844.
- Navaneeth BV, Belwadi MR. Antibiotic resistance among gram-negativebacteria of lower respiratory tract secretions in hospitalized patients.Indian J Chest Dis Allied Sci 2002; 44(3): 173-176.
- Pittet D. Nosocomial pneumonia: Incidence, morbidity and mortality in the intubatedventilated patient. Schweiz Med Wochenschr 1994; 124(6):227-235.
- 10. Morehead RS, Pinto SJ. Review article. Ventilator-associated pneumonia.Arch Intern Med 2000; 160: 1926-1936.
- 11. Dicker RC, Burton AH, Dean JA, Dean AG. In: Epiinfoversion 5: aword processing database and statiostics programme for epidemiology onmicrocomputers. Georgia: USD, Incoperated; 1990.
- 12. Veena KHB, Nagarathna S, Chandramuki A. Antimicrobial resistancepattern among aerobic gram-negative bacilli of lower respiratory tractspecimens of intensive care unit patients in a neurocentre. Indian J ChestDis Allied Sci 2007; 49(1): 19-22.
- Falagas ME, Mourtzoukou EG, Vardakas KZ. Sex differences in the incidence and severity of respiratory tract infections. Respir Med. 2007 Sep;101(9):1845–63.
- 14. Vijay S, Dalela G. Prevalence of LRTI in patients presenting with productive cough and their antibiotic resistance pattern. J Clin Diagn Res. 2016 Jan;10(1):DC09–12.
- Humphreys H, Newcombe RG, Enstone J, Smyth ET, McIlvenny G, Davies E, et al. Four country healthcare–associated infection prevalence survey: pneumonia and lower respiratory tract infections. J Hosp Infect. 2010 Mar;74(3):266–70.
- Khan S, Priti S, Ankit S. Bacteria etiological agents causing lower respiratory tract infections and their resistance patterns. Iran Biomed J. 2015;19(4):240–6.
- Ullah B, Ahmed S, Shahariar M, Yesmine S. Current trend of antibiotic resistance in lower respiratory tract infections (LRTIs): an experience in a teaching hospital in Bangladesh. Bangladesh Pharma J. 2016 Aug 10;19(1):85– 91.
- 18. Parajuli NP, Acharya SP, Mishra SK, Parajuli K, Rijal BP, Pokhrel BM. High burden of

antimicrobial resistance among gram negative bacteria causing healthcare associated infections in a critical care unit of Nepal. Antimicrobial Resistance & Infection Control. 2017 Dec:6(1):1-9.

- Bhatta DR, Hamal D, Shrestha R, Supram HS, Joshi P, Nayak N, Gokhale S. Burden of multidrug resistant respiratory pathogens in intensive care units of tertiary care hospital. Asian Journal of Medical Sciences. 2019 Mar 1;10(2):14-9.
- 20. Hsu LY, Apisarnthanarak A, Khan E, Suwantarat N, Ghafur A, Tambyah PA. Carbapenem–resistant acinetobacter baumannii and enterobacteriaceae in South and Southeast Asia. Clin Microbiol Rev. 2017 Jan;30(1):1–22.
- 21. Gill JS, Arora S, Khanna SP, Kumar KH. Prevalence of multidrug–resistant, extensively drug–resistant, and pandrug–resistant

Pseudomonas aeruginosa from a tertiary level intensive care unit. J Glob Infect Dis. 2016 Oct ;8(4):155–9.

- 22. Trinh TD, Zasowski EJ, Claeys KC, Lagnf AM, Kidambi S, Davis SL, Rybak MJ. Multidrugresistant Pseudomonas aeruginosa lower respiratory tract infections in the intensive care unit: prevalence and risk factors. Diagnostic microbiology and infectious disease. 2017 Sep 1;89(1):61-6.
- 23. Tenover FC. Mechanisms of antimicrobial resistance in bacteria. The American journal of medicine. 2006 Jun 1;119(6):S3-10.
- 24. Upadhyay V, Kumar A, Jayesh AK. A Study of microbial colonization and their antibiotic resistance pattern in endotracheal aspirate cultures in intensive care unit patients at a tertiary care hospital of Eastern UP, India. Int J Curr Microbiol App Sci. 2018;7(4):2298–306.