e-ISSN: 0976-822X, p-ISSN:2961-6042

Available online on http://www.ijcpr.com/

International Journal of Current Pharmaceutical Review and Research 2025; 17(10); 83-88

Original Research Article

Evaluation of Cord Blood Analytes and Serum Lactate in Term Babies Presenting with Meconium-Stained Amniotic Fluid

Khyati Rathore¹, Kesha Salvi², Vidhiben V. Patel³

¹Assistant Professor, Obstetrics and Gynaecology, GMERS Medical College Gandhinagar, Gujarat, India ²Consultant Obstetrician & Gynaecologist, Pramukhswami Medical College KARAMSAD, Gujarat, India

³Assistant Professor, Sheth Vadilal Sarabhai Medical College and General, Hospital, Ahmedabad, Gujarat

Received: 01-07-2025 / Revised: 16-08-2025 / Accepted: 16-09-2025

Corresponding Author: Dr. Khyati Rathore

Conflict of interest: Nil

Abstract

Background: Meconium-stained amniotic fluid (MSAF) is commonly encountered during labour and is often associated with concerns regarding fetal hypoxia. Objective biochemical markers such as umbilical cord blood gas analysis and lactate estimation can help differentiate physiological meconium passage from pathological fetal compromise.

Objectives: To evaluate cord blood analytes and serum lactate levels in term neonates born through MSAF with no additional risk factors and to analyze their correlation with neonatal outcomes.

Methods: A prospective observational study was conducted at tertiary care hospital Hospital, Gujarat, over 10 months (May 2015–March 2016) involving 264 term pregnant women with MSAF and no other risk factors. Umbilical arterial blood samples were analyzed for pH, pO₂, pCO₂, HCO₃ (actual and standard), base excess (BE, SBE), and lactate levels. Neonatal outcomes were assessed by Apgar scores, NICU admissions, and birth weight. Correlations between lactate and cord blood analytes were evaluated using Pearson's coefficient.

Results: Lactate values ranged from 16–55 mg% (mean 35.14 mg%), with most cases in the 36–40 mg% group. Lactate showed weak but significant correlations with pH (r = -0.17, p = 0.0059), H⁺ (r = 0.18, p = 0.0039), pO₂ (r = 0.16, p = 0.0091), and pCO₂ (r = -0.30, p < 0.00001), and moderate negative correlations with HCO₃A (r = -0.51), HCO₃S (r = -0.46), BE (r = -0.51), and SBE (r = -0.52), all p < 0.00001. Apgar scores at 1 and 5 minutes were not significantly associated with lactate groups. NICU admission occurred in 11% of neonates, mostly for respiratory distress; there was one unrelated neonatal death.

Conclusion: Elevated cord blood lactate levels are common in term neonates with MSAF even in the absence of additional risk factors or adverse outcomes. Lactate correlates moderately with metabolic acid—base parameters and can serve as a simple adjunct to cord blood gas analysis for early identification of subclinical fetal hypoxia, aiding clinical decision-making and reducing unnecessary interventions.

Keywords: Meconium-Stained Amniotic Fluid, Umbilical Cord Blood, Lactate, pH, Base Excess, Fetal Hypoxia.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Intrapartum fetal surveillance aims to identify fetuses at risk of hypoxia and subsequent neurological injury, allowing timely intervention to reduce perinatal morbidity and mortality [1]. Traditional methods such as fetal heart rate monitoring, meconium staining of amniotic fluid (MSAF), and fetal scalp blood sampling are widely used but have limitations in sensitivity and specificity for detecting fetal acidaemia [1].

MSAF is observed in approximately 7–22% of term and 23–52% of post-term deliveries [1]. Although meconium passage may represent a physiological event related to fetal maturation, it

may also be triggered by hypoxia, vagal stimulation, or umbilical cord compression, leading to anal sphincter relaxation and meconium passage into the amniotic cavity [1]. Approximately 5% of infants born through MSAF develop meconium aspiration syndrome (MAS), a major cause of respiratory morbidity and mortality in the neonatal period [2]. Around one-third of affected neonates require interventions such as intubation, mechanical ventilation, or advanced therapies, despite improvements in perinatal care [2].

The presence and thickness of meconium are considered important clinical markers. Thick and

granular meconium is significantly associated with low cord pH and acidemia, adverse neonatal outcomes, and higher rates of operative delivery [3]. However, thin meconium may represent antepartum asphyxial events, as its dilution occurs gradually over hours to days [4]. Studies have demonstrated that thin meconium is associated with elevated urinary lactate:creatinine (L:C) ratios, indicating antepartum hypoxia, whereas thick meconium reflects intrapartum compromise [4].

Cord blood gas analysis provides an objective assessment of fetal acid—base status, and cord blood pH and base excess are traditionally used to document intrapartum hypoxia [1]. However, these parameters are influenced by both respiratory and metabolic factors. In contrast, lactate measurement reflects anaerobic metabolism and may provide a more direct and sensitive marker of fetal hypoxia [3]. Elevated lactate levels correlate with the severity of acidemia, low Apgar scores, and adverse neonatal outcomes, including respiratory distress, persistent pulmonary hypertension, and NICU admissions [2,3].

Recent evidence suggests that cord blood lactate levels may help predict which neonates born through MSAF are at higher risk of developing MAS and related complications, thereby guiding early intervention strategies [2,5]. Elevated lactate has also been identified as a potential adjunct to pH and base excess in the assessment of fetal well-being [4,3].

Given the limitations of conventional monitoring tools and the clinical burden of MSAF, evaluating cord blood analytes and serum lactate levels may improve early identification of at-risk neonates, enable targeted postnatal management, and potentially improve outcomes.

Materials and Methodology

Study Design and Setting: This prospective observational study was conducted at the Department of Obstetrics and Gynecology, at tertiary care hospital, Gujarat from May 2015 to March 2016. Ethical approval was obtained, and informed consent was secured from all participants.

Participants: A total of 264 term pregnant women with MSAF and no additional risk factors were included.

Inclusion Criteria

- Term pregnancy (≥ 37 weeks)
- Singleton, cephalic presentation
- Meconium-stained amniotic fluid at delivery

No fetal congenital anomalies or maternal comorbidities

e-ISSN: 0976-822X, p-ISSN: 2961-6042

Exclusion Criteria

- Clear amniotic fluid
- Preterm, multifetal or non-cephalic presentations
- Hypertension, diabetes, IUGR, or other risk factors

Data Collection: Immediately after delivery, the umbilical cord was double-clamped.

- 1 mL of arterial cord blood was collected in pre-heparinised syringes for ABG analysis
- 2 mL was collected in plain syringes for serum lactate estimation using the colorimetric method.

Lactate values were categorized in 5 mg% intervals (16–20, 21–25, 26–30, 31–35, 36–40, 41–45, 46–50, 51–55 mg%).

Neonatal Outcomes: Birth weight, Apgar scores at 1 and 5 minutes, NICU admission, and mortality were recorded.

Statistical Analysis: Data were analyzed using SPSS v20 and GraphPad Prism 5. Continuous variables were expressed as mean \pm SD. Pearson's correlation was applied between lactate and cord blood analytes. p \leq 0.05 was considered statistically significant.

Result

A total of 264 term pregnant women with meconium-stained amniotic fluid (MSAF) and no additional risk factors were included in this prospective observational study.

Umbilical arterial cord blood was analyzed for pH, hydrogen ion concentration (H⁺), partial pressure of oxygen (pO₂), partial pressure of carbon dioxide (pCO₂), actual bicarbonate (HCO₃A), standard bicarbonate (HCO₃S), base excess (BE), standard base excess (SBE), and lactate concentration. Neonatal outcomes were assessed by Apgar scores at 1 and 5 minutes, birth weight, NICU admission, and mortality.

Lactate concentrations ranged from 16 mg% to 55 mg%, with a mean of 35.14 mg%. For analysis, lactate values were grouped in 5 mg% intervals. The largest proportion of neonates (24.6%) fell within the 36–40 mg% category, followed by 26–30 mg% (21.6%) and 31–35 mg% (16.3%).

This distribution indicates a mild but consistent elevation in lactate levels in MSAF cases, reflecting a shift towards anaerobic metabolism even in the absence of other risk factors.

Table 1: Distribution of Lactate Groups in the Study Population (n = 264)

Lactate Range (mg%)	Frequency	Percentage (%)
16–20	10	3.8
21–25	19	7.2
26–30	57	21.6
31–35	43	16.3
36–40	65	24.6
41–45	33	12.5
46–50	29	11.0
51–55	8	3.0
Total	264	100.0

The majority of women (85.6%) delivered vaginally, 10.2% underwent lower segment cesarean section (LSCS), and 4.1% had instrumental deliveries (3.0% vacuum, 1.1% forceps). Among the LSCS group, 20 cases involved thick meconium. Instrumental deliveries included 5 cases with thick and 6 with thin meconium. Vaginal deliveries included 206 cases with thin and 23 with thick meconium. The mode of delivery was determined by fetal heart rate abnormalities and stage of labour, following standard intrapartum protocols, and showed no specific association with lactate groups.

Of the 264 neonates, 234 (88.6%) were transferred to their mothers, while 29 neonates (11.0%) were admitted to the NICU, predominantly for respiratory distress. There was one neonatal death, which occurred 48 hours after birth and was attributed to a probable congenital heart disease. The deceased neonate had elevated lactate and low Apgar scores (4 and 5 at 1 and 5 minutes, respectively), but this isolated event lacked statistical significance.

- a) Lactate and pH: The mean pH was 7.26, with values ranging from 7.30 in the 21-25 mg% lactate group to 7.24 in the 51-55 mg% group. The correlation between lactate and pH was weak but statistically significant (R = -0.1693, R² = 0.0287, p = 0.0059).
- **b)** Lactate and H^+ : Mean H^+ increased from 50.16 mmol/L in the 21–25 mg% lactate group to 57.06 mmol/L in the 51–55 mg% group, with an overall mean of 54.29 mmol/L. The correlation was weak but significant (R = 0.177, R² = 0.0313, p = 0.0039).

- c) Lactate and pO₂: Mean pO₂ values ranged from 20.93 mmHg (16–20 mg%) to 21.61 mmHg (51–55 mg%), with an overall mean of 22.25 mmHg. The correlation between lactate and pO₂ was weak but significant (R = 0.1601, $R^2 = 0.0256$, p = 0.0091).
- **d)** Lactate and pCO₂: Mean pCO₂ decreased from 54.33 mmHg (16–20 mg%) to 42.41 mmHg (51–55 mg%), with an overall mean of 48.43 mmHg. A weak negative but significant correlation was found $(R = -0.2972, R^2 = 0.0883, p < 0.00001)$.

e) Lactate and Bicarbonate Parameters

- HCO₃A: Mean = 21.27 mmol/L; moderate negative correlation with lactate (R = -0.5113, R² = 0.2614, p < 0.00001).
- HCO₃S: Mean = 18.38 mmol/L; negative correlation with lactate (R = -0.4629, $R^2 = 0.2143$, p < 0.00001).

Both bicarbonate parameters showed progressive decline with rising lactate, consistent with metabolic acidosis.

f) Lactate and Base Excess

- Base Excess (BE): Showed a moderate negative correlation with lactate (R = -0.5112, $R^2 = 0.2613$, p < 0.00001).
- Standard Base Excess (SBE): Also negatively correlated with lactate (R = -0.5152, R² = 0.2654, p < 0.00001).

Although BE and SBE decreased with increasing lactate, mean values remained above severe acidemia thresholds (-10 to -12 mmol/L).

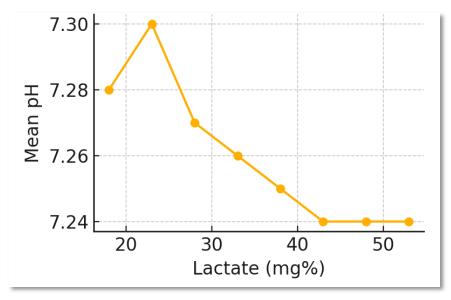


Figure 1: Correlation between Lactate and pH

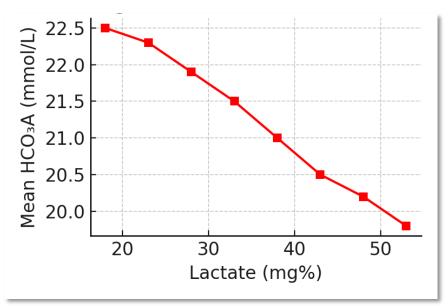


Figure 2: Correlation between Lactate and HCO₃A

Table 2: Comparison of Mean Umbilical Cord Blood Analytes Between NICU-Admitted Neonates and Interventional Deliveries

Parameter	NICU-Admitted Neonates (n	Interventional Deliveries (n
	= 29)	= 38)
pH	7.25	7.26
H ⁺ (mmol/L)	56.13	54.76
pO ₂ (mmHg)	22.09	21.46
pCO ₂ (mmHg)	51.68	49.97
HCO ₃ A (mmol/L)	21.95	21.75
HCO ₃ S (mmol/L)	19.20	18.86
Base Excess (mmol/L)	-4.33	-4.64
Standard Base Excess (mmol/L)	-2.60	-2.73
Lactate (mg%)	38.57	34.89
Birth Weight (kg)	2.83	2.98

A Chi-square test comparing Apgar scores across lactate groups showed no significant association at

1 minute (χ^2 = 34.68, p = 0.4833). Similarly, no statistically significant association was observed

between 5-minute Apgar scores and lactate groups ($\chi^2 = 57.37$, p = 0.0009; not significant). Most of neonates had Apgar scores ≥ 8 at 5 minutes, irrespective of lactate levels.

Discussion

This prospective study evaluated umbilical cord blood analytes and lactate levels in 264 term parturient with meconium-stained amniotic fluid (MSAF) and no additional risk factors. Lactate concentrations ranged from 16-55 mg%, with a mean of 35.14 mg% (3.89 \pm 2.33 mmol/L). The largest proportion of neonates fell within the 36-40 mg% range, indicating a mild but consistent elevation, suggestive of a shift toward anaerobic metabolism even in low-risk settings. The observed mean lactate closely corresponds to previously established predictive cut-offs for neonatal morbidity: Tuuli et al. identified 3.9 mmol/L as the optimal threshold [6]; Geetha Damodaran et al. reported clinical decision limits of 27 mg% [7]; and Laila et al. found >3.6 mmol/L to have 93% diagnostic accuracy for hypoxia [8]. Lactate, a direct marker of anaerobic metabolism, rises earlier and persists longer than pH changes [9,10], offering superior predictive value compared to derived measures such as base excess.

Mode of delivery was predominantly vaginal (85.6%), with no significant association between delivery mode and lactate category, similar to prior observations [11,12].

The pH showed a weak but significant negative correlation with lactate (R = -0.17, p = 0.006), while H^+ correlated positively, consistent with physiological expectations [9,13,14]. There is no universal pH threshold for fetal acidosis, and its diagnostic utility is limited [15].

 pO_2 and pCO_2 showed weak correlations with lactate, consistent with earlier reports indicating their limited role in predicting neonatal status [16-19]. Bicarbonate and base excess parameters showed moderate negative correlations with lactate (HCO₃A R = -0.51; BE R = -0.51; p < 0.00001), supporting the use of lactate as a more direct and discriminating marker of fetal metabolic status [9,20-22]. No statistically significant association was observed between lactate and Apgar scores, although higher lactate levels tended to be associated with lower scores, consistent with previous findings [23].

Subgroup analysis showed no significant deviations among NICU-admitted neonates or interventional deliveries. One neonatal death occurred, associated with high lactate and low Apgar, but attributable to probable congenital heart disease. Overall, cord blood lactate showed moderate correlations with metabolic parameters and weak correlations with pH, pO₂, and pCO₂, underscoring its value as a

practical, early marker of fetal metabolic compromise in MSAF, even in low-risk labours. This study adds focused data to a limited body of literature by excluding high-risk factors, unlike previous studies [6,42].

e-ISSN: 0976-822X, p-ISSN: 2961-6042

Conclusion

Umbilical arterial cord blood lactate provides an objective and sensitive marker of fetal hypoxia and metabolic acidosis, even when conventional cord blood parameters appear normal. In meconiumstained amniotic fluid (MSAF) cases, lactate levels were consistently elevated, reflecting subtle metabolic compromise. Lactate measurement is simple, cost-effective, and requires minimal sample volume, making it a valuable adjunct in both clinical decision-making and medico-legal documentation. Larger prospective studies are warranted to further define its prognostic role, particularly in relation to long-term neonatal outcomes.

References

- 1. Parveen S. Umbilical cord arterial blood base excess as gold standard for foetal well-being screening test validity at term delivery. J Pak Med Assoc. 2010;60(5):347–52.
- Ojha RK, Singh SK, Batra S, Sreenivas V, Puliyel JM. Lactate: creatinine ratio in babies with thin meconium staining of amniotic fluid. BMC Pediatr. 2006; 6:13. doi:10.1186/1471-2431-6-13.
- 3. Karabayir N, Demirel A, Bayramoglu E. Blood lactate level and meconium aspiration syndrome. Arch Gynecol Obstet. 2014. doi:10.1007/s00404-014-3482-3.
- 4. Aafreen R, Dabral A, Panwar M, Tripathi A. Cord blood parameters and fetal outcome in neonates with fetal distress due to meconium staining liquor—an observational study. Int J Reprod Contracept Obstet Gynecol. 2022; 11(11): 3074—9.
- 5. Elsadek AE, Abdel Haie OM, Hassanin MB, El Fallah AA, El Bishbishy MI. Prognostic value of serum lactate level in umbilical cord in predicting complications and outcome of meconium aspiration syndrome. Benha J Appl Sci. 2021;6(4):213–7.
- 42 Methodius G. Tuuli, Molly J. Stout, MD, Anthony Shanks, Anthony O. Odibo, George A. Macones, and Alison G. Cahill. Umbilical Cord Arterial Lactate Compared With pH for Predicting Neonatal Morbidity at Term. Obstet Gynecol. 2014 October; 124(4): 756–761.
- 7. 30 Geetha Damodaran K, Gilsa E.S, Varun.S, Janaki Menon2 and Parvathy R, Veena. PAPGAR score and umbilical cord blood levels of Lactate and Creatininein Perinatal asphyxia. International Journal of Biomedical Research 2015; 6(04): 242-245.

- 8. Laila H. Mohammad, Nermin R. Mohammad, Nagy A. Al-Hussaieny, and Samia H. Rezq. Early Predictions of Hypoxic-Ischemic Encephalopathy by Umbilical Cord Nucleated Red Blood Cells and Lactate. Med. J. Cairo Univ., Vol. 79, No. 1, December: 625-631, 2011.
- 9. 6] Gjerris AC, Staer-Jensen J, Jørgensen JS, Bergholt T, Nickelsen C. Umbilical cord blood lactate: a valuable tool in the assessment of fetal metabolic acidosis. Eur J Obstet Gynecol Reprod Biol. 2008 Jul;139(1):16-20.
- Yeomans ER, Hauth JC, Gilstrap LC 3rd, Strickland DM. Umbilical cord pH, PCO2, and bicarbonate following uncomplicated term vaginal deliveries. Am J Obstet Gynecol. 1985 Mar 15;151(6):798-800.
- 11. Becker S, Solomayer E, Dogan C, Wallwiener D, Fehm T. Meconium-stained amniotic Fluid-perinatal outcome and obstetrical management in a low-risk suburban population. Eur J Obstet Gynecol Reprod Biol. 2007 May;132(1):46-50. Epub 2006 Jul 11.
- Naina Kumar, Aakanksha Suman, Krutika Sawant. Relationship between immediate postpartum umbilical cord blood pH and fetal distress. International Journal of Contemporary Pediatrics. Int J Contemp Pediatr. 2016 Feb;3(1):113-119.
- 13. Karabayir N, Demirel A, Bayramoglu E. Blood lactate level and meconium aspiration syndrome. Arch Gynecol Obstet. 2015 Apr;291(4):849-53.
- 14. Blackwell SC, Moldenhauer J, Hassan SS, Redman ME, Refuerzo JS, Berry SM, Sorokin Y. Meconium aspiration syndrome in term neonates with normal acid-base status at delivery: is it different? Am J Obstet Gynecol. 2001 Jun;184(7):1422-5.
- 15. Westgate J, Garibaldi JM, Greene KR. Umbilical cord blood gas analysis at delivery:

- a time for quality data. Br J Obstet Gynaecol. 1994 Dec;101(12):1054-63.
- Chanrachakul B, Chua S, Nordström L, Yam J, Arulkumaran S. Umbilical artery blood gas and lactate in healthy newborns. J Med Assoc Thai. 1999 Apr;82(4):388-93.
- 17. Yeomans ER, Hauth JC, Gilstrap LC 3rd, Strickland DM. Umbilical cord pH, PCO2, and bicarbonate following uncomplicated term vaginal deliveries. Am J Obstet Gynecol. 1985 Mar 15;151(6):798-800.
- 18. Sumeet Jeena. Foetal acid-base status in clinical foetal distress and high-risk cases. Postgrad Med J. 1972 Feb; 48(556): 91–94.
- 19. Andres RL, Saade G, Gilstrap LC, Wilkins I, Witlin A, Zlatnik F, Hankins GV. Association between umbilical blood gas parameters and neonatal morbidity and death in neonates with pathologic fetal acidemia. Am J Obstet Gynecol. 1999;181(4):867.
- 20. da Silva S, Hennebert N, Denis R, Wayenberg JL. Clinical value of a single postnatal lactate measurement after intrapartum asphyxia. Acta Paediatr. 2000 Mar;89(3):320-3.
- Methodius G. Tuuli, Molly J. Stout, MD, Anthony Shanks, Anthony O. Odibo, George A. Macones, and Alison G. Cahill. Umbilical Cord Arterial Lactate Compared With pH for Predicting Neonatal Morbidity at Term. Obstet Gynecol. 2014 October; 124(4): 756–761.
- 22. Wiberg N, Kallen K, Olofsson P. Base deficit estimation in umbilical cord blood is influenced by gestational age, choice of fetal fluid compartment, and algorithm for calculation. Am J Obstet Gynecol. 2006; 195(6):1651–1656.
- 23. Khoshnow Q, Mongelli M. Cord Blood Lactate and pH Values at Term and Perinatal Outcome: A Retrospective Cohort Study. Webmed Central Obstetrics and Gynaecology 2010;1(9): WMC00694.