e-ISSN: 0976-822X, p-ISSN:2961-6042

Available online on http://www.ijcpr.com/

International Journal of Current Pharmaceutical Review and Research 2025; 17(11); 686-691

Original Research Article

Comparing Stress Response During Fiberoptic Versus Direct Laryngoscopic Orotracheal Intubation After Dexmedetomidine Premedication

Subhadarshini Tripathy¹, Nibedita Pani², Preetimayee Naik³, Tanmaya Padhy⁴

Received: 18-09-2025 / Revised: 17-10-2025 / Accepted: 18-11-2025

Corresponding Author: Subhadarshini Tripathy

Conflict of interest: Nil

Abstract:

Background: Endotracheal intubation commonly provokes sympathetic stimulation, leading to transient hypertension and tachycardia. Attenuating these haemodynamic responses is crucial, especially in patients with cardiovascular risk.

Methods: This randomized clinical trial included 80 patients (ASA I–II) undergoing elective surgery under general anaesthesia. Participants were randomly assigned to fibreoptic-guided intubation (Group F) or direct laryngoscopy (Group D). Haemodynamic parameters were recorded at baseline, during, and after intubation, and analyzed using SPSS 18.0.

Results: Group F exhibited significantly lower systolic, diastolic, and mean arterial pressures between 2-5 minutes post-intubation (p < 0.01) compared to Group D. Heart rate elevation was transient in both groups but returned to baseline more rapidly in Group F. Beyond 7 minutes, haemodynamic variables stabilized in both groups. Overall, fibreoptic bronchoscopy showed superior attenuation of pressor and tachycardic responses.

Conclusion: Fibreoptic-guided intubation provides better haemodynamic stability than direct laryngoscopy during general anaesthesia.

Keywords: Fibreoptic Intubation, Direct Laryngoscopy, Haemodynamic Response, Dexmedetomidine, General Anaesthesia.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Airway management is a critical component of anesthesia practice, and endotracheal intubation is one of the most essential yet physiologically stressful procedures performed in the perioperative setting [1]. The act of laryngoscopy and tracheal intubation triggers a strong sympathetic response distinguished by elevated heart rate, blood pressure, plasma catecholamine levels. hemodynamic changes are usually well tolerated in healthy individuals but may be hazardous in patients with cardiovascular or cerebrovascular diseases. various techniques the years, pharmacological agents have been explored to pressor response, attenuate this with dexmedetomidine—a α2highly selective adrenergic agonist—emerging as a valuable adjunct due to its sedative, analgesic, and sympatholytic properties [2-4].

available airway management techniques, direct laryngoscopy (DL) remains the standard method, while fiberoptic laryngoscopy (FOL) is increasingly used, especially in patients with anticipated difficult airways [5]. The physiological stress response, however, may vary depending on the degree of airway manipulation and visualization technique [6]. While direct laryngoscopy provides a rapid and reliable means of intubation, it involves significant stimulation of the oropharyngeal and laryngeal structures Fiberoptic intubation, on the other hand, is often considered less stimulating, but its impact on hemodynamic and stress responses—especially when combined with premedication such as dexmedetomidine—remains an area of ongoing clinical interest [8,9]. Comparative evaluation of these two methods can guide anesthesiologists in selecting the optimal approach for patients with varying clinical conditions.

¹Assistant Professor, Department of Anaesthesia, IMS and SUM Hospital II, Bhubaneswar, Odisha, India ²Professor, Department of Anaesthesia, PGIMER & Capital Hospital, Bhubaneswar, Odisha, India ³Consultant Anaesthesiologist, Department of Anaesthesia, DD Medical College & Hospital, Kendujhar, Odisha, India

⁴Assistant Professor, Department of Neurology, IMS and SUM Hospital II, Bhubaneswar, Odisha, India

This randomised prospective study was carried out in the Department of Anaesthesiology at SCB Medical College to compare the stress response during fiberoptic versus direct laryngoscopic orotracheal intubation following dexmedetomidine premedication. Through this comparative analysis, the study seeks to identify the safer and more effective intubation technique for minimizing stress responses in patients undergoing general anesthesia.

Methods

Materials and Methods

Study Design and Setting: This randomized clinical trial took place at the Department of Anaesthesiology, SCB Medical College, Cuttack, for two years from September 2018 to October 2020.

Sample Size and Study Population: Eighty patients were recruited and randomly divided into two equal cohorts of forty using computer-generated allocation. Group F underwent intubation via a flexible fiberoptic bronchoscope, while Group D was intubated using conventional direct laryngoscopy. All participants received dexmedetomidine as part of the premedication protocol.

Eligibility Criteria: The study included patients of either sex classified as ASA Physical Status I or II and scheduled for elective surgeries under general anaesthesia. Exclusion criteria involved patient nonconsent, existing cardiovascular, respiratory, neurological, renal, or hepatic conditions, pregnancy or lactation, known hypersensitivity to study drugs, psychiatric disorders, or anticipated difficult airway (Mallampati Grade III/IV or thyromental distance below 6.5 cm).

Preoperative Assessment and Premedication: Patients were evaluated one day prior to surgery and instructed to maintain an eight-hour fasting period. Baseline haemodynamic variables were recorded following intravenous cannulation. Standard premedication consisted of intravenous ranitidine (50 mg), glycopyrrolate (200 μ g), metoclopramide (10 mg), and dexmedetomidine (0.5 μ g/kg) diluted in 10 ml normal saline, infused slowly over 10 minutes.

Anaesthetic Protocol: After three minutes of preoxygenation with 100% oxygen, anaesthesia induction was achieved using butorphanol (10 µg/kg) and propofol (2 mg/kg). Once bag-mask ventilation was confirmed, succinylcholine (1.5 mg/kg) was administered to facilitate tracheal intubation. Anaesthesia maintenance involved 1.5% sevoflurane in oxygen. Haemodynamic measurements were taken before and after induction, during intubation, and post-intubation.

e-ISSN: 0976-822X, p-ISSN: 2961-6042

Intubation and Monitoring Procedures: In Group F, intubation was guided by a lubricated, prefiberoptic bronchoscope with the endotracheal tube mounted on it. Once the vocal cords and carina were visualized, the tube was advanced, and the bronchoscope was withdrawn. Group D patients were intubated using a Macintosh laryngoscope (blade size 3 or 4 as needed). Endotracheal placement was confirmed auscultation and end-tidal CO2 (EtCO2) monitoring. Anaesthesia was maintained with 1–3% sevoflurane in a mixture of 50% nitrous oxide and oxygen at a flow of 3 L/min. Atracurium (0.5 mg/kg) was given as an initial dose, followed by intermittent 0.1 mg/kg boluses for muscle relaxation. Haemodynamic data were recorded five minutes before induction, then every minute for the first five minutes postintubation, and subsequently every two minutes for the next ten minutes.

Statistical Analysis: Descriptive and inferential statistics were used, with continuous data expressed as mean \pm SD and categorical data as frequencies and percentages. Group comparisons were made using Student's t-test, Chi-square/Fisher's Exact test, and non-parametric methods where required, analyzed in SPSS v18.

Results

The demographic characteristics of the study participants were comparable between the two groups. The average age of patients in cohort F was 42.38 ± 4.82 years, while in cohort D it was 39.62 ± 6.47 years, showing a statistically significant difference (Table 1).

Table 1: Demographic profile of Study cohort

Parameter	Cohort F	Cohort D	Statistical	p-	Interpretation
	(n=40)	(n=40)	Test	Value	
Mean Age	42.38 ± 4.82	39.62 ± 6.47	Independent t-	0.035	Statistically significant
(years)			test		difference
Mean Weight	69.02 ± 13.61	69.25 ± 12.43	Independent t-	0.939	No significant difference
(kg)			test		_
Gender	Male: 23	Male: 19	Chi-square test		Groups comparable
Distribution	(56.7%)	(46.7%)	_		
	Female: 17	Female: 21			
	(43.3%)	(53.3%)			

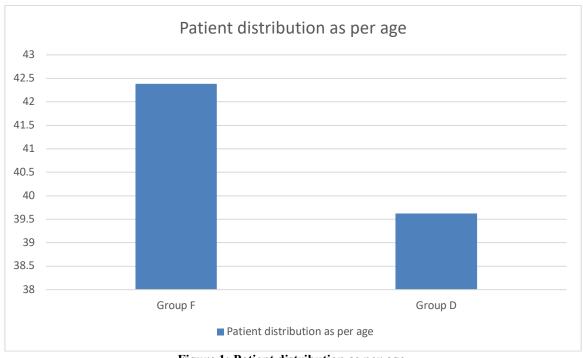


Figure 1: Patient distribution as per age.

Systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean arterial pressures (MAP) were consistently lower in cohort F, which underwent intubation with a flexible fibreoptic bronchoscope, compared to cohort D intubated via direct laryngoscopy. The most significant differences occurred between 2 and 5 minutes post-

intubation (p < 0.01), indicating a more stable hemodynamic response in cohort F. Beyond 5 minutes, pressures gradually normalized in both groups, demonstrating effective autonomic recovery and comparable mean values by 15 minutes (Table 2).

Table 2: Comparison of cardiovascular parameters Between Cohort F and cohort D

Parameter Phase		Cohort F (Mean ±	Cohort D (Mean ±	Interpretation	
		SD)	SD)	•	
SBP	Baseline	126.60 ± 4.39	128.80 ± 3.29	Comparable at baseline	
	2–5 min	121.30–121.15	131.35–127.35	Significantly lower in Group F (p <	
		mmHg	mmHg	0.01)	
	7–15	120.95-121.90	116.95–114.05	Stabilization observed in both	
	min	mmHg	mmHg	groups	
DBP	Baseline	81.70 ± 3.61	84.35 ± 3.86	Slightly lower in Group F (p =	
				0.002)	
	2–5 min	78.75–80.50 mmHg	89.05–85.80 mmHg	Lower in Group F ($p < 0.001$)	
	7–15	81.30–79.85 mmHg	81.90-80.40 mmHg	Values converged over time	
	min			_	
MAP	Baseline	92.45 ± 3.69	95.00 ± 2.30	Higher in Group D initially (p =	
				0.0001)	
	2–5 min	89.60-88.10 mmHg	100.62–95.15 mmHg	Significantly lower in Group F (p <	
				0.01)	
	7–15	91.20–90.45 mmHg	91.15-88.02 mmHg	MAP comparable in both groups	
	min				

Heart rate response was consistently attenuated in cohort F compared to cohort D from 3 to 11 minutes following intubation (p < 0.01). While both groups exhibited transient tachycardia immediately after intubation, cohort F demonstrated quicker stabilization and maintenance of near-baseline heart

rate levels, suggesting superior suppression of sympathetic stimulation. This pattern indicates that fibreoptic bronchoscopy induces less hemodynamic stress than direct laryngoscopy, aligning with trends seen in cardiovascular parameters (Table 3).

77.70–77.15

7–15 min

Sustained lower HR in Group F

Table 3. Comparison of fleart Rate Detween Condit F and condit D								
Phase	Cohort F (Mean ± SD)	Cohort D (Mean ± SD)	P value	Observation				
Baseline	77.25 ± 4.47	77.90 ± 3.29	0.462	Comparable baseline HR				
Induction	75.00 ± 3.89	73.45 ± 3.20	0.058	No significant difference				
1 min	86.00 ± 5.30	87.05 ± 3.26	0.289	Transient rise post-induction				
2–5 min	83.80-78.90	88.85–87.05	< 0.0001	HR significantly lower in Group F				

< 0.0001

85.05-81.05

Table 3: Comparison of Heart Rate Between Cohort F and cohort D

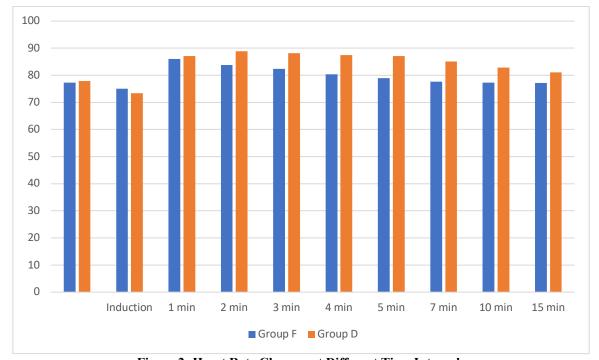


Figure 2: Heart Rate Changes at Different Time Intervals

Discussion

The present randomized clinical trial compared haemodynamic responses during intubation performed with a flexible fibreoptic bronchoscope (Group F) versus direct laryngoscopy (Group D) under general anaesthesia. The results demonstrated fibreoptic-guided intubation produced significantly lower systolic, diastolic, and mean arterial pressures, along with reduced heart rate elevations, particularly during the first five minutes post-intubation. These findings indicate that fibreoptic intubation provides greater cardiovascular stability, likely due to less mechanical stimulation of the oropharyngeal and laryngeal structures compared with traditional laryngoscopy [10,11]. Several previous studies have consistently reported haemodynamic blunting effect dexmedetomidine. Sulaiman et al. [12] and Jain et al. [13] showed that dexmedetomidine in doses of 0.5–1.0 µg/kg administered over 10 minutes before induction effectively suppresses the pressor response to laryngoscopy and intubation. The current study aligns with these findings, demonstrating a notable attenuation of sympathetic parameters such as heart rate and blood pressure following dexmedetomidine premedication, confirming its role in maintaining cardiovascular stability during airway manipulation.

Khudad et al. [14] reported comparable haemodynamic outcomes between fibreoptic bronchoscopy and direct laryngoscopy; however, the present results revealed a comparatively lower stress response in the fibreoptic group. Similarly, Aghdaii et al. [15] found that although intubation time was shorter with direct laryngoscopy, haemodynamic differences between the techniques were not statistically significant. The diminished stress response observed with fibreoptic intubation in the present study may be due to minimal airway irritation and reduced stimulation compared with conventional methods.

Additionally, Jain et al. [13] observed that dexmedetomidine markedly decreased sympathetic responses—including heart rate and blood pressure—compared to fentanyl. In the present trial, premedication with dexmedetomidine 0.5 μ g/kg infused over 10 minutes produced similar effects, corroborating the observations of Sulaiman et al. [12] and Gandhi et al. [16]. The incidence of bradycardia or hypotension was minimal, highlighting the haemodynamic safety of this dosage when used as a pre-induction adjunct.

e-ISSN: 0976-822X, p-ISSN: 2961-6042

The choice of anaesthetic agents and premedications also influences the cardiovascular response to intubation. While Aghdaii et al. [15] employed lorazepam and morphine, and Khudad et al. [14] used fentanyl, pancuronium, and thiopental, the present study used propofol, butorphanol, and succinylcholine followed by atracurium, with maintenance via sevoflurane and nitrous oxide. pharmacological Despite these differences, dexmedetomidine consistently demonstrated superior suppression of haemodynamic fluctuations, underscoring its efficacy in reducing peri-intubation stress responses.

Conclusion

The present randomized clinical trial demonstrated that intubation performed using a flexible fibreoptic bronchoscope result in significantly greater haemodynamic stability compared to direct laryngoscopy in patients undergoing general anaesthesia with dexmedetomidine premedication. Fibreoptic-guided intubation produced lower systolic, diastolic, and mean arterial pressures, as well as attenuated heart rate responses, particularly during the critical 2–5 minutes following intubation, indicating reduced sympathetic stimulation and smoother airway management. These findings suggest that the fibreoptic technique, by minimizing mechanical stress on the airway, offers a safer alternative for patients at risk of cardiovascular fluctuations, such as those with hypertension or ischemic heart disease. While both methods eventually achieved comparable haemodynamic recovery by 15 minutes, the superior early stability associated with fibreoptic bronchoscopy underscores its clinical advantage in maintaining perioperative cardiovascular control and enhancing patient safety.

References

- Karamchandani K, Wheelwright J, Yang AL, Westphal ND, Khanna AK, Myatra SN. Emergency airway management outside the operating room: current evidence and management strategies. Anesthesia & Analgesia. 2021 Sep 1;133(3):648-62.
- 2. Barak M, Ziser A, Greenberg A, Lischinsky S, Rosenberg B. Hemodynamic and catecholamine response to tracheal intubation: direct laryngoscopy compared with fiberoptic intubation. Journal of Clinical anesthesia. 2003 Mar 1;15(2):132-6.
- 3. Liu X, Li Y, Kang L, Wang Q. Recent advances in the clinical value and potential of dexmedetomidine. Journal of Inflammation Research. 2021 Dec 30:7507-27.
- 4. Seyrek M, Halici Z, Yildiz O, Ulusoy HB. Interaction between dexmedetomidine and α -adrenergic receptors: emphasis on vascular

- actions. Journal of cardiothoracic and vascular anesthesia. 2011 Oct 1;25(5):856-62.
- Galway U, Wang M, Deeby M, Zura A, Riter Q, Abdelmalak B. Recognition and management of the difficult airway—a narrative review and update on the latest guidelines. Journal of Oral and Maxillofacial Anesthesia. 2023 Dec 30;2.
- 6. Cooper PR, McParland BE, Mitchell HW, Noble PB, Politi AZ, Ressmeyer AR, West AR. Airway mechanics and methods used to visualize smooth muscle dynamics in vitro. Pulmonary pharmacology & therapeutics. 2009 Oct 1:22(5):398-406.
- 7. Collins SR. Direct and indirect laryngoscopy: equipment and techniques. Respiratory care. 2014 Jun 1;59(6):850-64.
- 8. Xiong J, Gao J, Pang Y, Zhou Y, Sun Y, Sun Y. Dexmedetomidine premedication increases preoperative sedation and inhibits stress induced by tracheal intubation in adult: a prospective randomized double-blind clinical study. BMC anesthesiology. 2022 Dec 21;22(1):398.
- Allen JM. Awake Fiberoptic Intubation: Dexmedetomidine Versus Fentanyl and Effects on Blood Pressure and Heart Rate (Doctoral dissertation, Franciscan Missionaries of Our Lady University).
- 10. Sachidananda R, Umesh G. A review of hemodynamic response to the use of different types of laryngoscopes. Anaesthesia, Pain & Intensive Care. 2019 Jan 24:201-8.
- 11. Adachi YU, Takamatsu I, Watanabe K, Uchihashi Y, Higuchi H, Satoh T. Evaluation of the cardiovascular responses to fiberoptic orotracheal intubation with television monitoring: comparison with conventional direct laryngoscopy. Journal of clinical anesthesia. 2000 Nov 1;12(7):503-8.
- 12. Sulaiman S, Karthekeyan RB, Vakamudi M, Sundar AS, Ravullapalli H, Gandham R. The effects of dexmedetomidine on attenuation of stress response to endotracheal intubation in patients undergoing elective off-pump coronary artery bypass grafting. Annals of cardiac anaesthesia. 2012 Jan 1;15(1):39-43.
- 13. Jain V, Chandak A, Ghosh A, Golhar M. Comparison of dexmedetomidine and fentanyl for attenuation of the hemodynamic response to laryngoscopy and tracheal intubation. Ain Shams Journal of Anesthesiology. 2015 Apr 1;8(2).
- 14. Khudad AM, Karem HN. Haemodynamic response to orotracheal intubation: direct laryngoscopy versus fiberoptic bronchoscopy. Zanco Journal of Medical Sciences (Zanco J Med Sci). 2010;14(3 Special):48-52.
- 15. Aghdaii N, Azarfarin R, Yazdanian F, Faritus SZ. Cardiovascular responses to orotracheal

- intubation in patients undergoing coronary artery bypass grafting surgery. Comparing fiberoptic bronchoscopy with direct laryngoscopy. Middle East J Anaesthesiol. 2010;20(6):833-.
- 16. Gandhi S, Goyal V, Radhakrishnan K, Balakrishnan M. Comparison of Dexmedetomidine with fentanyl in attenuation of pressor response during laryngoscopy and intubation. IOSR J Pharm. 2014;4(2):28-38.

e-ISSN: 0976-822X, p-ISSN: 2961-6042