e-ISSN: 0976-822X, p-ISSN:2961-6042

Available online on http://www.ijcpr.com/

International Journal of Current Pharmaceutical Review and Research 2025; 17(11); 707-710

Original Research Article

Epidemiology and Neurological Outcomes of Acute Traumatic Thoracolumbar Spinal Cord Injury in a Tertiary Care Center in North India: A Prospective Cohort Study

Manish Mehta¹, Anurag Sharma², Bharat Lal Meena³, Prerna Bhaskar⁴, Lokpal Singh Bhati⁵, Dhruy Sharma⁶

¹Junior Specialist, Department of Orthopaedics, General Hospital and Medical College, Sawaimadhopur, Rajasthan

²Assistant Professor, Department of Orthopedics, Sawai Man Singh Medical College, Jaipur, Rajasthan ³Assistant Professor, Department of Orthopedics, Government medical college, Sawai Madhopur, Rajasthan

⁴Medical Officer, Department of Orthopedics, Satellite Hospital, Jhotwara, Jaipur, Rajasthan ⁵Assistant Professor, Department of Orthopedics, Government Medical College, Jaisalmer, Rajasthan ⁶BPT 2nd Year, MJRP College, Jaipur, Rajasthan

Received: 01-08-2025 / Revised: 15-09-2025 / Accepted: 21-10-2025

Corresponding author: Dr. Prerna Bhaskar

Conflict of interest: Nil

Abstract

Objective: To describe the epidemiological profile and quantify neurological recovery using the ASIA Impairment Scale (AIS) in patients with acute traumatic thoracolumbar spinal cord injury (SCI).

Design: Prospective observational cohort study.

Setting: Department of Physical Medicine and Rehabilitation, SMS Medical College, Jaipur, Rajasthan.

Participants: Sixty consecutive patients with acute traumatic thoracolumbar SCI.

Main Outcome Measures: Demographic data and AIS grade conversion rates from baseline to 3-month follow-up. Statistical significance was assessed using Chi-square and paired t-tests.

Results: The mean age was 46.22 ± 14.42 years, with a significant clustering in the 51-60 year age group (31/60, 51.7%, p<0.001). Males predominated (63.3%, p=0.04). The majority were from rural areas (56.7%) and lower-middle-class backgrounds (60.0%). Fall from height was the most common mechanism of injury (51.7%, p<0.001). Thoracic-level injuries were most frequent (66.7%), with D6-D10 being the commonest segment (33.3%). At 3 months, a statistically significant conversion of AIS grades was observed (Chi-square, p<0.001), with the proportion of AIS A patients decreasing from 38.3% to 28.3%. The ASIA lower limb motor score showed a highly significant mean improvement of 9.83 points (95% CI: 7.12-12.54, p<0.001).

Conclusion: The epidemiological profile of thoracolumbar SCI in this region is distinct, with a high incidence of falls in an older population. The ASIA score demonstrates significant predictive value, with substantial and statistically significant neurological recovery observed within the first 3 months.

Keywords: Spinal Cord Injuries, Epidemiology, ASIA Impairment Scale, Disease Progression, India, Thoracolumbar Vertebrae.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Spinal cord injury (SCI) is a catastrophic event with a heterogeneous epidemiological profile that varies significantly across different geographical and socioeconomic regions [1]. While high-income countries report road traffic accidents (RTAs) as the leading cause, studies from developing nations like India consistently identify falls as the predominant etiology [2, 3]. Understanding these local patterns is crucial for developing targeted prevention strategies. The thoracolumbar junction is a biomechanically vulnerable region, making it a

common site for traumatic SCI [4]. The neurological outcome following these injuries is primarily tracked using the American Spinal Injury Association (ASIA) Impairment Scale (AIS), which provides a standardized measure of deficit and recovery [5]. The early conversion of AIS grades, particularly from complete to incomplete status, is a key prognostic indicator and a critical endpoint in clinical trials [6]. Most large-scale epidemiological studies on SCI are from Western populations or combine all spinal levels. There is a paucity of

prospective data focusing specifically on the thoracolumbar region from North India. This study aims to fill that gap by prospectively describing the unique demographic and clinical profile of acute traumatic thoracolumbar SCI patients and quantifying their neurological recovery based on ASIA scoring at a 3-month follow-up.

Methods

Study Design and Participants: This prospective cohort study was conducted after institutional ethical approval. Sixty patients with acute traumatic thoracolumbar SCI, admitted to the rehabilitation department within 15 days of injury, were enrolled. Written informed consent was obtained from all participants or their guardians.

Data Collection: At baseline, detailed demographic data were recorded, including age, gender, residence, socioeconomic status (using the Kuppuswamy scale), and mode of injury. Clinical assessment included a neurological examination to determine the vertebral and neurological level of injury and the AIS grade.

Outcome Measures: The primary outcome was the change in AIS grade from baseline to the 3-month follow-up. Secondary outcomes included the change in the ASIA lower limb motor score.

Statistical Analysis: Data were analyzed using SPSS v22. Categorical data were described as frequencies and percentages. The Chi-square test was used to analyze the significance of AIS grade conversion. A paired t-test was used to compare ASIA motor scores between baseline and follow-up. A p-value < 0.05 was considered statistically significant.

e-ISSN: 0976-822X, p-ISSN: 2961-6042

Results

Demographic and Injury Characteristics: The study population (n=60) had a mean age of $46.22 \pm$ 14.42 years. A Chi-square goodness-of-fit test revealed a statistically significant deviation from a uniform age distribution (p<0.001), with over half the cohort (51.67%) belonging to the 51-60 year age group. There was a significant male preponderance (38/60, 63.33%) compared to females (22/60, 36.67%; Chi-square, p=0.04). Most participants were married (88.33%), hailed from rural areas (56.67%), and belonged to the lowermiddle class (60.00%). A Chi-square test confirmed that the mode of injury was not uniformly distributed (p<0.001), with fall from being the predominant mechanism (51.66%), significantly more common than road traffic accidents (23.33%) and other causes (Table

Table 1: Baseline Demographic and Injury Profile (n=60)

Characteristic	Category	n	%	p-value	
Age Group	51-60 years	31	51.67%	<0.001*	
	41-50 years	12	20.00%		
	21-30 years	8	13.33%		
	≤20 years	5	8.33%		
	31-40 years	4	6.67%		
Gender	Male	38	63.33%	0.04*	
Residence	Female	22	36.67%	0.32	
	Rural	34	56.67%		
	Urban	26	43.33%		
Socioeconomic Status	Lower Middle Class	36	60.00%	<0.001*	
	Middle Class	19	31.67%		
	Upper Middle Class	5	8.33%		
Mode of Injury	Fall from Height	31	51.66%	<0.001*	
	Road Traffic Accident	14	23.33%		
	Fall of Heavy Object	8	13.33%		
	Others	7	11.66%		

*Chi-square goodness-of-fit test; statistically significant (p<0.05).

Clinical Profile and Neurological Level: The majority of vertebral injuries (66.67%) were in the thoracic spine, with the D6-D10 segment being the most commonly involved (33.33%). Lumbar injuries accounted for 33.33% of cases. At baseline,

38.33% of patients had a complete injury (AIS A), while 51.66% had incomplete injuries (AIS B-D), and 10% were neurologically intact (AIS E) (Table 2).

Table 2: Clinical and Neurological Characteristics at Baseline

Characteristic	Category	n	%
Vertebral Level	Thoracic (D1-D12)	40	66.67%
	Lumbar (L1-L5)	20	33.33%
Most Common Segment	D6-D10	20	33.33%
Baseline AIS Grade	A (Complete)	23	38.33%
	B-D (Incomplete)	31	51.66%
	E (Normal)	6	10.00%

Neurological Recovery at 3 Months: A Chisquare test for independence revealed a statistically significant change in the distribution of AIS grades from baseline to the 3-month follow-up (p<0.001). The proportion of patients with AIS A decreased from 38.3% to 28.3%, while the number of patients in higher AIS categories increased, indicating significant neurological conversion (Figure 1).

Figure 1: Conversion of ASIA Impairment Scale (AIS) Grades from Baseline to 3 Months: A significant shift in grade distribution was observed

(Chi-square, p<0.001). Furthermore, the ASIA lower limb motor score showed a highly significant improvement across the entire cohort. The mean motor score increased from 32.45 ± 8.12 at baseline to 42.28 ± 11.45 at 3 months. A paired t-test confirmed this was a statistically significant mean improvement of 9.83 points (95% Confidence Interval: 7.12 to 12.54, p<0.001). This significant improvement was consistent across all vertebral level subgroups (D1-D12, L1, and L2-L5, all p<0.01).

e-ISSN: 0976-822X, p-ISSN: 2961-6042

Table 3: Change in ASIA Lower Limb Motor Score from Baseline to 3 Months

Vertebral Level	Baseline (Mean \pm SD)	3-Months (Mean \pm SD)	Mean Difference (95% CI)	p-value
Overall (n=60)	32.45 ± 8.12	42.28 ± 11.45	9.83 (7.12 - 12.54)	<0.001*
D1-D12 (n=40)	28.10 ± 3.36	38.25 ± 11.99	10.15 (6.01 - 14.29)	<0.001*
L1 (n=11)	40.82 ± 8.28	50.91 ± 2.34	10.09 (5.21 - 14.97)	0.002*
L2-L5 (n=9)	32.89 ± 8.80	44.56 ± 10.53	11.67 (5.21 - 18.13)	0.006*

*Paired t-test; *statistically significant (p<0.05). CI = Confidence Interval.*

Discussion

This prospective cohort study delineates a distinct epidemiological profile of thoracolumbar SCI in North India and provides robust statistical evidence of significant neurological recovery within the first 3 months post-injury.

Our findings reveal a profile characterized by an older patient population, with a statistically significant majority in the 51-60 year age group (p<0.001). This contrasts sharply with profiles from Western nations, where the typical age at injury is much younger, often in the third decade of life [2, This demographic shift has important implications, as older age is a known independent predictor of poorer functional outcomes and higher complication rates after SCI [8]. The significant male preponderance (p=0.04) and the high incidence of falls, predominantly affecting rural, lower-middle-class males, align with other Indian studies that highlight occupational hazards in agriculture and construction as major causes [6, 9]. The statistically significant predominance of fall from height as an etiology (p<0.001) underscores the critical need for targeted public health interventions focusing on workplace and fall prevention safety in these communities.

A key and robust finding of this study is the quantifiable neurological recovery observed within

the first 3 months post-injury. The significant conversion of AIS grades (p<0.001) and the mean improvement of 9.83 points in the lower limb motor score are clinically meaningful. This period is widely recognized as the phase of greatest spontaneous neurological recovery, primarily due to the resolution of spinal shock and neuroplasticity mechanisms [10]. The magnitude of motor recovery we observed is consistent with larger cohort studies. For instance, in the European Multicenter Study on Spinal Cord Injury (EM-SCI), patients with thoracic injuries showed significant early motor score improvements, though the exact gain varies by initial severity [11]. Our findings of conversion from complete to incomplete status are consistent with trends reported by Marino et al., who noted rising conversion rates over time, underscoring the dynamic nature of SCI [12].

The predominance of thoracic-level injuries, particularly in the lower thoracic spine (D6-D12), can be attributed to the biomechanical vulnerability of the thoracolumbar junction [5]. The significant recovery observed even in these patients, who often have more severe initial deficits, highlights the potential for improvement and the critical importance of early and aggressive rehabilitation. The fact that significant motor score improvement was seen across all vertebral level subgroups (all

e-ISSN: 0976-822X, p-ISSN: 2961-6042

p<0.01) reinforces that early intensive rehabilitation is beneficial regardless of the specific injury level.

Limitations

The single-center design may limit the generalizability of the findings to other regions of India. The 3-month follow-up, while capturing the most dynamic phase of recovery, is insufficient to document long-term functional outcomes. The study did not correlate recovery with specific surgical or medical interventions, which could be a confounder.

Conclusion

This study provides a detailed prospective account of thoracolumbar SCI in North India, revealing a unique epidemiology driven by falls in an older, rural population—a finding that demands tailored prevention strategies. Furthermore, it robustly quantifies significant neurological recovery within the first 3 months, validating the ASIA score as a sensitive tool to track this early, critical period. The statistically significant 9.83-point improvement in motor score provides a benchmark for expected recovery in similar populations. These findings reinforce the indispensable need for dedicated early rehabilitation services to capitalize on this window of neurological plasticity and maximize functional outcomes for patients.

Reference

- 1. Singh R. Epidemiology of Spinal Cord Injuries: Indian perspective. Epidemiology of spinal cord injuries. 2012:157-68.
- World Health Organization. International perspectives on spinal cord injury. Geneva: WHO; 2013.
- 3. Roberts TT, Leonard GR, Cepela DJ. Classifications In Brief: American Spinal Injury Association (ASIA) Impairment Scale.

- Clin Orthop Relat Res. 2017;475(5):1499-1504.
- 4. Curt A, Dietz V. Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocol in predicting outcome. Arch Phys Med Rehabil. 1997;78(1):39-43.
- 5. Leucht P, Fischer K, Muhr G, Mueller EJ. Epidemiology of traumatic spine fractures. Injury. 2009 Feb;40(2):166-72.
- 6. Mathur N, Jain S. Spinal cord injury: scenario in an Indian state. Spinal Cord. 2015 May;53(5):349-52.
- 7. Van Asbeck FW, Post MW, Pangailla RF. An epidemiological description of spinal cord injuries in The Netherlands in 1994. Spinal Cord. 2000 Jul;38(7):420-4.
- 8. Wilson JR, Davis AM. Defining age-related differences in outcome after traumatic spinal cord injury: analysis of a combined, multicenter dataset. Spine J. 2014 Jul 1;14(7):1192-8.
- 9. Kumar S, Verma V. Epidemiology of spinal injury patients admitted to the department of orthopaedics, King George Medical University. Int J Res Orthop. 2019; 5:1196.
- 10. Kirshblum S, Botticello A, Benedetto J, Donovan J, Marino R, Hsieh S, et al. A Comparison of Diagnostic Stability of the ASIA Impairment Scale Versus Frankel Classification Systems for Traumatic Spinal Cord Injury. Arch Phys Med Rehabil. 2020;101(9):1556-1562.
- 11. Spieß MR, Müller RM, Rupp R, Schuld C, van Hedel HJA; EM-SCI Study Group. Conversion in ASIA impairment scale during the first year after traumatic spinal cord injury. J Neurotrauma. 2009 Nov;26(11):2027-36.
- 12. Marino RJ, Leff M, Cardenas DD, Donovan J, Chen D, Kirshblum S, et al. Trends in Rates of ASIA Impairment Scale Conversion in Traumatic Complete Spinal Cord Injury. Neurotrauma Rep. 2020;1(1):192-200.