Design, Development and Evaluation of Bilayered Tablets Containing Amlodipine Besilate as Immediate Release and Metoprolol Succinate as Sustained Release

*Ashok Kumar. S, Duraivel. S, Pragathikumar.B

Department of Pharmaceutics, Nimra College of Pharmacy, Vijayawada-521456

ABSTRACT
Bilayer tablets of Amlodipine besilate (IR) Metoprolol succinate (SR) were formulated for the management of hypertension. In the formulation of immediate release sodium starch glycolate were used as super disintegrant and was directly compressed. For sustained release portion HPMC polymers were used in granulation stage. Preformulation studies were performed prior to compression. The compressed bilayer tablets were evaluated for weight variation, dimension, hardness, friability, drug content, disintegration time and invitro drug release using USP dissolution apparatus type 2 (paddle). It was found that the optimized formulation showed 15.98%, 39.04%, 58.76%, 94.86% release for Metoprolol succinate in 1, 4, 8, 20 hours respectively. However, Amlodipine besilate released 95% at the end of 45 minutes. The IR spectrum and DSC studies revealed that there is no disturbance in the principal peaks of pure drugs Metoprolol succinate and Amlodipine besilate. This further confirms the integrity of pure drugs and no incompatibility of them with excipients. The stability studies were carried out for the optimized batch for three months and it showed acceptable results. The kinetic studies of the formulations revealed that diffusion is the predominant mechanism of drug and release follows first order kinetics.

Key words: Bilayer tablets, Amlodipine besylate, Metoprolol succinate, extended release, immediate release, antihypertension, combination

INTRODUCTION
In the recent times, multi-layer matrix tablets are gaining importance in the design of oral Controlled drug delivery systems. Bi-layer tablets are novel drug delivery systems where combination of two or more drugs in a single unit. They are preferred for the following reasons: To co-administer two different drugs in the same dosage form, to minimize physical and chemical Incompatibilities, for staged drug release, IR and SR in the same tablet, for chronic condition Requiring repeated dosing. In the present study a combination drug therapy is recommended for treatment of hypertension to Allow medications of different mechanism of action to complement each other and together.
Effectively lower blood pressure at lower than maximum doses of each. The rational for Combination therapy is to encourage the use of lower doses of drug to reduce the patient’s blood Pressure, minimize dose dependent side effects and adverse reactions. Amlodipine is a prototype second generation dihydropyridine calcium channel blocker that Inhibits the transmembrane influx of calcium ions into vascular smooth muscle and cardiac Muscle. It has a longer duration of action (ie) half life of 40 hours and the initial effects are Cumulative over many days and more over for patient compliance in case of anti-angina patients, A rapid onset of action is necessary for immediate pain relief. Hence Amlodipine can be given as A single immediate release dose.
Metoprolol is selective β1 receptor blocker used in the treatment of hypertension and angina-pectoris. It reduces plasma rennin activity in hypertensives. It has half life of 3 to 4 hours in fast hydroxylator and about 7 hour in
slow hydroxylators. Hence to improve its therapeutic efficacy and patient compliance the formulation of metoprolol succinate as sustained release is necessary for chronic use.

MATERIAL AND METHOD

Materials: Amlodipine besylate, Metoprolol succinate was received giftSample from Concept Pharmaceutical, Aurangabad. HPMC K4M, Microcrystalline cellulose was received gift sample from ColorcornAsia Pvt. Ltd. Goa. Starch 1500, Sodium starch glygolate, Sunset yelLow was received gift sample from Concept pharmaceutical, Aurangabad. All other chemicals are of analytical grades.

Formulation of tablets:
Preparation of Amlodipine besylate immediate release layer: Amlodipine besilate immediate release tablets were prepared by using direct compression method. The Microcrystalline Cellulose, Dicalcium phosphate, sodiumstarch glycolate and the active ingredient were passed through sieve no. 30 and mixed homogenously.

Table 5. Evaluated results of bilayer tablets

<table>
<thead>
<tr>
<th>S.No</th>
<th>Evaluation tests</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Weight Variation (%)</td>
<td>-1.82 to +2.54</td>
<td>-2.42 to +2.81</td>
<td>-1.56 to +3.12</td>
<td>-1.94 to +2.92</td>
<td>-2.23 to +2.63</td>
<td>-1.21 to +2.21</td>
</tr>
<tr>
<td>2</td>
<td>Average Thickness (mm)</td>
<td>4.20</td>
<td>4.20</td>
<td>4.22</td>
<td>4.21</td>
<td>4.20</td>
<td>4.20</td>
</tr>
<tr>
<td>3</td>
<td>Average Hardness</td>
<td>2.8</td>
<td>3.2</td>
<td>3.8</td>
<td>4.5</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>4</td>
<td>Friability (%)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.6</td>
<td>0.82</td>
<td>1.21</td>
<td>1.41</td>
</tr>
<tr>
<td>5</td>
<td>Disintegration test</td>
<td>8.35</td>
<td>7.10</td>
<td>6.52</td>
<td>6.0</td>
<td>5.30</td>
<td>5.32</td>
</tr>
<tr>
<td>6</td>
<td>Drug content (%)</td>
<td>Metoprolol Succinate</td>
<td>80.67</td>
<td>85.43</td>
<td>89.98</td>
<td>96.82</td>
<td>97.42</td>
</tr>
<tr>
<td></td>
<td>Amlodipine besylate</td>
<td>83.77</td>
<td>85.89</td>
<td>87.26</td>
<td>91.88</td>
<td>96.65</td>
<td>97.22</td>
</tr>
</tbody>
</table>

Figure-7 Invitro release Curve Of Metoprolol Succinate

Figure-8

Figure-9 Reference Vs Test
Magnesium stearate and purified talc were passed through sieve no.60 and added as a lubricant to the above dry mix and mixed well for 5 minutes, homogenously to get uniform blend.

Preparation of Metoprolol succinate sustained release layer: Metoprolol Succinate sustained release layer were prepared and mesured dissolution rate at 1, 4, 8, and 20 hours. The dissolution rate was measured using Higuchi plots for all Metoprolol Succinate Tablets.

Table 6. Comparative dissolution study of M1-M6 with various ratios of polymer

<table>
<thead>
<tr>
<th>Time</th>
<th>Percentage drug release</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hour</td>
<td>47.28</td>
<td>38.23</td>
<td>27.50</td>
<td>29.57</td>
<td>21.19</td>
<td>15.98</td>
<td></td>
</tr>
<tr>
<td>4 hour</td>
<td>-</td>
<td>70.70</td>
<td>58.37</td>
<td>52.93</td>
<td>47.75</td>
<td>39.04</td>
<td></td>
</tr>
<tr>
<td>8 hour</td>
<td>-</td>
<td>-</td>
<td>69.27</td>
<td>82.63</td>
<td>59.11</td>
<td>58.76</td>
<td></td>
</tr>
<tr>
<td>20 hour</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>93.46</td>
<td>94.86</td>
<td></td>
</tr>
</tbody>
</table>

Table No.7 USP limits for drug release for Metoprolol Succinate SR

<table>
<thead>
<tr>
<th>Time</th>
<th>Amount of drug release</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hour</td>
<td>NMT 20%</td>
</tr>
<tr>
<td>4 hour</td>
<td>20 – 40%</td>
</tr>
<tr>
<td>8 hour</td>
<td>40 – 60%</td>
</tr>
<tr>
<td>20 hour</td>
<td>NLT 80%</td>
</tr>
</tbody>
</table>

Table No.8- Stability studies of film coated tablets (M6)

<table>
<thead>
<tr>
<th>S. No</th>
<th>Time</th>
<th>Percentage drug release</th>
<th>Metoprolol succinate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Initial st rd th</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25±2 C/40±2 C 25±2 C/6 40±2 C 25±2 C/6 40±2 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60±5% /75±5% 0±5%RH /75±5% 0±5%RH /75±5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>RH RH RH RH RH RH</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 h</td>
<td>15.98 15.60 15.95 15.17 15.92 15.02 15.88 15.17</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4 h</td>
<td>39.04 39.00 38.28 39.78 38.75 38.77 37.20 39.11</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8 h</td>
<td>58.76 57.12 56.18 58.16 57.25 58.17 57.14 58.64</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20 h</td>
<td>94.86 95.76 94.84 94.06 93.88 95.12 94.80 94.67</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45 min</td>
<td>95.42 96.45 95.02 95.10 95.36 95.28 93.88 93.23</td>
<td></td>
</tr>
</tbody>
</table>

Figure-10-Higuchi Plots For All Metoprolol Succinate Tablets
Table 9- Noc-No Observable Changes

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Conditions</th>
<th>Metoprolol succinate with</th>
<th>Sample intervals</th>
<th>Physical changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>HPC, MAIZESTARCH,METHYL CELLULOSE MCCPH101(1:1:1), Mg.Streate (1:0.5:0.5) & Amlodipine besylate with MCC PH 101, Lactose, DCP,S,S,G,TALC (1:1:1:1)</td>
<td>st</td>
<td>th</td>
</tr>
<tr>
<td>1</td>
<td>Room temperature</td>
<td>Noc</td>
<td>Noc</td>
<td>Noc</td>
</tr>
<tr>
<td>2</td>
<td>Room temperature</td>
<td>Noc</td>
<td>Noc</td>
<td>Noc</td>
</tr>
<tr>
<td>3</td>
<td>Room temperature</td>
<td>Noc</td>
<td>Noc</td>
<td>Noc</td>
</tr>
<tr>
<td>4</td>
<td>Room temperature</td>
<td>Noc</td>
<td>Noc</td>
<td>Noc</td>
</tr>
<tr>
<td>5</td>
<td>Room temperature</td>
<td>Noc</td>
<td>Noc</td>
<td>Noc</td>
</tr>
<tr>
<td>6</td>
<td>Room temperature</td>
<td>Noc</td>
<td>Noc</td>
<td>Noc</td>
</tr>
</tbody>
</table>

Figure 11: DSC thermogram of Amlodipine Besilate pure drug

![Figure 11](image1)

Figure 12: DSC thermogram of Amlodipine Besilate -A3

![Figure 12](image2)

Figure 13: DSC thermogram of Metoprolol succinate pure drug

![Figure 13](image3)

prepared by wet granulation method. Thehydroxypropyl cellulose, ETHYLCELLULOSE, MCC PH101, and metoprololsuccinate were passed through sieve no.30 and mixed Homogenously. For the binder
solution weighed amount of methylcellulose was added little by little in glycerol in water with continuous stirring to avoid lumps. The binder solution was slowly added to the above blend and mixed well to get a final coherent mass. These granules were air dried initially and passed through mesh no. 20. The resultant granules left on the sieve were milled through sieve of pore size 1.5 mm. The granules were finally dried at 60ºc till a constant LOD reaches (3-4%). MAGNESIUM STERATE, maize starch were added to the dried granules and homogenously mixed.

Evaluation of Granules Flow Properties [1,2] The prepared granules were evaluated for parameters like bulk density, tap density, Carr’s Index, Angle of repose, and Hausner’s ratio, loss on drying. The results are as in table 3 and 4.

Table No-10- Drug Release M6 Formulation

<table>
<thead>
<tr>
<th>Time (Hr)</th>
<th>Log Time</th>
<th>SQRT Time</th>
<th>% Cumulative Release</th>
<th>Log % Release</th>
<th>% Drug remaining</th>
<th>Log % Drug remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>0.000</td>
<td>1.000</td>
<td>15.98</td>
<td>1.204</td>
<td>84.02</td>
<td>1.924</td>
</tr>
<tr>
<td>4</td>
<td>0.602</td>
<td>2.000</td>
<td>39.04</td>
<td>1.5915</td>
<td>60.96</td>
<td>1.785</td>
</tr>
<tr>
<td>8</td>
<td>0.903</td>
<td>2.828</td>
<td>58.76</td>
<td>1.7691</td>
<td>41.24</td>
<td>1.615</td>
</tr>
<tr>
<td>20</td>
<td>1.301</td>
<td>4.472</td>
<td>94.86</td>
<td>1.9771</td>
<td>5.14</td>
<td>0.711</td>
</tr>
</tbody>
</table>

Methods: Simultaneous estimation of Metoprolol succinate and Amlodipine besylate by UV spectroscopy

Preparation of stock solution of Metoprolol succinate
Metoprolol succinate equivalent to 20 mg of metoprolol was accurately weighed and transfer to 100 ml volumetric flask. About 90 ml of 0.1 N HCl was added and sonicated to dissolve. The volume was made up to the mark with 0.1 N HCl. The final dilution contained 500 µg/ml of metoprolol.

Preparation of stock solution of Amlodipine besylate
Amlodipine besylate equivalent to 10 mg of amlodipine was accurately weighed and transfer to 100 ml volumetric flask. About 90 ml of 0.1 N HCl was added and sonicated to dissolve. The volume was made up to the mark with 0.1 N HCl. The final dilution contained 200 µg/ml of amlodipine.

Preparation of synthetic mixture of Metoprolol and Amlodipine
10 ml of each of the stock solutions of metoprolol and amlodipine were transferred to 10 ml volumetric flask. The volume was made up to mark with 0.1 N HCl. The resultant solution contained 50 µg/ml of metoprolol and 20 µg/ml of amlodipine.

Preparation calibration curve:
i) For Amlodipine besylate: 100 mg of Amlodipine besylate was accurately weighed and dissolved in 25 ml of methanol in 100 ml volumetric flask and the volume was made up to the mark using methanol, to make (1000 µg/ml) standard stock solution (I). Then 1 ml stock solution (I) was taken in another 100 ml volumetric flask and further dilute in 100 ml of methanol to make (10 µg/ml) standard stock solution (II), then final
concentrations were prepared 16, 20, 24, 28, 32 µg/ml with 0.1N HCL. The absorbance of standard solution was determined using UV/ VIS spectrophotometer at 244nm. Linearity of standard curve was assessed from the square of correlation coefficient (r²) which determined by least-square linear regression analysis.

ii) For Metoprolol succinate: 100 mg of Metoprolol succinate was accurately weighed and dissolved in 25 ml of 6.8 pH buffer in 100 ml volumetric flask and the volume was made up to the mark using 6.8 pH buffer, to make (1000 µg/ml) standard stock solution (I). Then 1 ml stock solution (I) was taken in another 100 ml volumetric flask and make up the volume with phosphate buffer pH 6.8 to get (10 µg/ml) standard stock solution (II), then final concentrations of 10, 20, 30, 40, 50, 60, 80 and 100 µg/ml were prepared from stock II. The absorbance of standard solution was determined using UV/ VIS spectrophotometer at 223 nm. Linearity of standard curve was assessed from the square of correlation coefficient (r²) which determined by least-square linear regression analysis.

Drug-Excipient Compatibility Study

Incompatibility studies were done by inducing stress at different temperatures such as freezer (100°C-200°C), Cold (20C- 80C), room temperature, 25°C±2°C/60%±5%RH, 30°C±2°C/65%±5%RH, 40°C±2°C/75%±5%RH, polymers and diluents and 1:0.5 other ingredients. The study was carried out for one month (1st, 7th, 15th, 21st and 30th day) and observation for the physical changes such as colour, liquefaction etc., were given in the table 9.

Content uniformity

Ten tablets were selected randomly and crushed, from that average weight of one tablet was dissolved using 20ml methanol and 20ml of 0.1N HCl until drugs get dissolved then added the dissolution media (0.1N HCl for amlodipine besylate and for metoprolol succinate (phosphate buffer pH 6.8) to make volume 100ml, 0.45µ membrane filter. Standard also performed with the same concentration then this would read at 244nm, 223nm by uv spectroscopy.

\[
\text{Amount of drug} = \frac{\text{sample absorbance} \times \text{std. dilution} \times \text{conversion factor} \times 100}{\text{Std. absorbance} \times \text{sample dilution}}
\]

\[
\text{Conversion factor} = \frac{\text{Molecular weight of Metoprolol Succinate}}{\text{Molecular weight of Metoprolol tartrate}}
\]

\[
\text{Conversion factor} = \frac{\text{Molecular weight of Amlodipine besylate}}{\text{Molecular weight of Amlodipine}}
\]

\[
\% \text{Purity} = \frac{\text{Amount}}{\text{Label claim}} \times 100
\]

\[
\text{Label Claim} = 25 \text{ mg (Metoprolol Succinate) and 10mg (Amlodipine besylate)}
\]
In vitro dissolution study of Metoprolol succinate sustained release matrix layer tablet: Drug release studies were carried out using USP dissolution test apparatus 2 at 50 rpm, 37±0.5°C, and pH 1.2 buffer (500ml) for 2 hours, since the average gastric emptying time is about 2 hours. The dissolution medium was replaced with pH 6.8 phosphate buffer (500ml) and experiment continued for another 20 hours. At the different time intervals, 1, 4, 8, 20 hours, 5ml of the sample was withdrawn and replaced with 5ml of drug-free dissolution medium. The samples withdrawn were analyzed by UV spectrophotometer at 223nm.

In vitro dissolution study of amlodipine besylate immediate release layer tablet: Amlodipine besylate immediate release tablets drug release studies carried out using USP dissolution rate test apparatus (apparatus 2, 100 rpm, 37±0.5°C) for 45 minutes in 0.1 N HCl (500ml). 5ml of the sample was withdrawn and replaced with 5ml of the 0.1 N HCl. The dissolution samples were obtained at the end of 45 minutes replacing with drug-free dissolution medium. The samples withdrawn were analyzed by a UV spectrophotometer at 244nm.

AT – Absorbance of test preparation
AS – Absorbance of standard preparation
WS – Weight of standard
DS – Dilution of standard preparation
DT – Dilution of test preparation
LC – Label claim (mg per tablets)
P – Potency of standard
D – Sum of correction factors for all previous time points
Correction factor = \(V \times R / 500 \)
V – Volume withdrawn at last time point
R – Percentage of drug released at last time point

Stability Studies: [9]

Figure 14: DSC thermogram of Metoprolol succinate tablet (M6)

Figure 15: FTIR of Amlodipine Besylate Formulation A3
The tablets were packed in blister packing and kept for 3 months at 40°C / 75% RH and 25°C / 60% RH in a stability chamber (Oswald, Mumbai). At the interval of 1 month tablets were withdrawn and evaluated for appearance, average weight, assay and in vitro drug release.

Differential Scanning Calorimetry Analysis: [10, 11, 12]

In the present study, samples in the range 5-10 mgs were taken in an aluminum crucible with lid and weighed accurately in a microbalance. For the tablet sample the individual layer was carefully scraped with a stainless steel file and a portion from the resulting powder was weighed before analysis. In Differential scanning calorimeter (Mettler Toledo GmbH, DSC 821e/700) argon gas was flown over all the samples at a rate of 50 ml/min in the study. Heat flow rates were measured over a temperature range of 30°C - 300°C at a heating rate of 15°C/min for Amlodipine Besilate pure drug, placebo and tablet samples. Similarly temperature range of 25°C - 250°C at a heating rate of 5°C/min was used for Metoprolol Succinate pure drug, placebo, and tablet samples.

Fourier transform infrared spectroscopic analysis:[7,11]

In the present study FTIR spectra of the Metoprolol succinate pure drug, Amlodipine besilate pure drug, and placebo of both layers and optimized bilayer formulation were recorded using a Fourier transform infrared spectrophotometer (BOMEM - MB 100 FTIR). Samples were prepared as KBr disks using a hydraulic pellet press and scanned from 4000 to 400 cm-1 at a resolution of 4 cm-1.

Kinetic Studies: [13]

The following plots were made: cumulative % drug release vs. time (zero order kinetic model); log cumulative of % drug remaining vs. time (first order kinetic model); cumulative % drug release vs. square root of time (higuchi model). The regression coefficient R2 value nearer to 1 indicates the model best fits the release mechanism.

RESULTS AND DISCUSSION

Preformulation studies: Preformulation Study Was Carried Out To Formulate Desired Metoprolol Succinate Sr And Amlodipine Besylate Tablets, Compatibility Studies Performed On The Physical Mix Of Metoprolol Succinate And Amlodipine Besylate With different Tablet Excipients At Temperature Such As Freezer,Cold 25°C±2°C/60%±5%RH, 30°C±2°C/65%±5%RH, 40°C±2°C/75%±5%RH, Hpc, Mccph101, Lactose, Dcp, Purified Talc, Maize Starch, Glycerol, Methyl Cellulose, Anhydrous Sodium Starch, Glycolate, And Magnesium Stearate Result Showed That No Physical Changes In The Value Of Metoprolol Succinate And Amlodipine Besylate Upto 1st, 7th, 15th, 21st And 30th Day, Which Indicates That Metoprolol And Amlodipine Is Stable In Various temperature. Calculated Value Of (Metoprolol Succinate And Amlodipine Besylate)

Percentage Compressibility(54.23% & 12%), Hausner’s Ratio (1.10 & 1.17), Angle Ofrepose (θ=68.8. & 26.7), Loss On Drying (0.52% & 1.6%) And Hygroscopicity (0.12% & 0.19) Of All Excipients indicates That Metoprolol Succinate Was Not Suitable For Direct Compression As Well As Having Very Poor Flow Property So Almost Lot Of Chances In Weight Variation During Filling Of Dye By The Blend And Granules Can Dry At 450c In Fbd. But Amlodipine Besylate Has A Shown significant Propriety For Direct Compression With Slightly Hygroscopic In Nature.

Physical properties of granules F1-F6
The Metoprolol succinate granules and Amlodipine besylate and blends from formulations (M1-M6 & A1-A3 respectively) were evaluated for bulk density, tapped density, compressibility index (Carr’s Index), Hausner’s ratio, particle size and angle of repose. Results are shown in (Table 3 & 4). Promisingly indicates that the flow of all formulations was good throughout the formulations due to particle sizes lying around 482 and 300µm respectively. SR part of Metoprolol succinate and IR part of Amlodipine besylate tablet (M1-M6 & A1-A3) was found within the specified limit for weight variation of all trial batches passed. Hardness of all formulations was in the range of 2.8 – 4.5 kg/cm². It should lie within the USP specification. Friability value for the trial batches was not more than 0.25% due to polymer concentration formulations.

Bilayer tablet were compressed at an average weight of 400mg were ±3.0%, which falls within the acceptable weight variation range of ±5% as per USP. Layer separation and disintegration was failed from A1 - A3, the decrease the MCC PH101 up 23% and increase super disintegrant 9% can overcome above problems. All ten tablets were found that the labeled amount of drug (25 & 10 mg), hence passes the test for content uniformity and the assay limit for the tablets were found to be 80-100 & 83-97%, shown in the table VI.

In-vitro drug release study
The expectation was to sustain the release of formulations in order to increase the polymers such as HPC & MCCPH101, ETHYLCELLULOSE concentrations gradually up to 82% and 70%, 4% respectively. The desired release pattern is shown in table VI as per USP monograph.

The trial batch (M1-M3) contains MCCPH101 and ETHYLCELLULOSE were 81%, 82%, 82% and 4%, 2.6%, 4% respectively. M4 has 70% HPC, 4% ETHYLCELLULOSE but the release profile was not desired. At formulation M5, end of 8th and 12th hour 60% and 93% of the drug was released. The drug release profile obtained was nearest at intervals 1st and 4th hour and more than specified limit at interval of 8th hour. The trial batch (M6) contains 70% of HPC, 4% ETHYLCELLULOSE as rate controlling polymer to that of tablet weight and contains 6.8% of MAIZESTARCH as diluents, 4% of METHYLCELLULOSE as binder and 1.2% of magnesium stearate as lubricants. The granules were compressed. At a hardness of 4.5 kg/cm², percentage of drug content determined as 100.2 and 97.22% was relates as per monograph. Dissolution study was carried out at the end of 20th hour 94.86% of the drug was released. The drug release profile obtained was within the specified limit at all intervals of standard, 1st, 4th, 8th and 20th hour shown in Figure 8.

The drug release data obtained for M6 was plotted according to different modes of data treatment are shown in fig 3,4,5,6.

The linear regression value was calculated and it was found to be 0.99. So it is obvious that the release of drug from the sustained release tablets were not obeyed Zero-order kinetics. The linear regression value was calculated and it was found to be 0.997. So it was obvious that the release of drug from the sustained release tablet follows first-order kinetics. Drug release from polymer matrix depends upon the concentration. The plot was linear and the linear regression coefficient value is 0.999. So it is obvious that the drug release obeyed diffusion mechanism from the SR matrix. The release exponent ‘n’ was 0.859. So it indicates a coupling of the diffusion and least considerable swelling mechanism—so-called anomalous diffusion—and may indicate that the drug release is controlled by more than one process. Incompatibility study of Metoprolol succinate and Amlodipine besylate with excipients

CONCLUSION

The present work has been observed that using of HPC, EC, MCCPH101 retarded the sustained drug release acceptably; formulation (M6) has shown a drug release NLT 80% in 20h was in accordance with the USP. when compared with all the formulations. M6 bilayer tablet was sufficiently produce sustained (SR) and immediate release (IR) and anomalous non-fickian transport of diffusion from first order release, considerable swelling and diffusion mechanism involved from the matrix of the formulation was observed.

In conclusion, in the present research, bilayer sustained and immediate release tablet formulation was successfully prepared for a once daily administration. Hence A3M6 was optimised formulation.

ACKNOWLEDGEMENTS

The authors are sincerely thankful to The RAINBOW PHARMA TRAININGLAB, HYDERABAD, India For Providing The Facilities To Complete This Research Work.
REFERENCES

17. Tripathi KD. Essentials of medicinal pharmacology. End.4, Jaypee brother’s medical publisher (p) Ltd, New Delhi, 2001: 539-