Formulation and Evaluation of Liposomes Containing Fluconazole

Vishal D. Yadav*, Ashwini D. Shinde, Prakash D. Jadhav

Department of Pharmaceutics, Arvind Gavali College of Pharmacy, Satara, Maharashtra, India.

ABSTRACT

Liposomal transporters are potential in topical drug delivery. In the current research work, statistical study for the formulation of fluconazole liposomes for topical delivery carried out by factorial design approach. For the preparation of liposomes, phospholipid (DPPC) and cholesterol were taken at 03 different concentrations and preparations were done by using ethanol injection technique. Optimized batch determined by applying experimental design on all nine batches and then optimized batch was characterized for zeta potential, entrapment efficiency, drug release, antimicrobial study and stability studies. From results of analysis it was concluded that vesicle size and entrapment efficiency are dependent on the cholesterol and lipid concentration. Batch F9 shows less particle size and entrapped efficiency was high. Liposome raises the skin penetration compared to marketed formulation. Antifungal activity of liposomal suspension was determined by disk diffusion technique against Candida albicans. Diameter of zone of inhibition of liposomal suspension was 24 mm; while zone of fungal growth of marketed gel (Flucos 0.5%) was less than liposomal drug i.e. 20 mm. Batch F9 was analyzed for physical stability studies. Liposomal suspension was stored at 4°C for 1 month. After one month they analyzed for the change in physical appearance, pH, %Entrapment efficiency, particle size of the vesicles, and Zeta potential. There was no change in the physical appearance neither in the formulation consistency of vesicles. Liposomal preparations could be a promising approach in novel drug delivery system.

Keywords: Entrapment efficiency, Factorial design, Fluconazole, Liposomes, Particle size analysis.

INTRODUCTION

Fungi are dependent microorganisms which create systemic infection to the skin. Apparently dermatologists generally have informed about patients with skin fungal infections. Around 21–26% of human population shows presence of fungal infections to the skin. Usually, fungal infections of skin can be cured with creams, gels and lotions containing antifungal medicaments. Probabilities of drug-drug interactions are irrelevant in the case of topical formulations which are common in orally administered antifungal drugs. Poor skin dispersion of hydrophilic antifungal drugs and high dosing occurrence of conventional antifungal preparations reduces their efficiency against skin fungal pathogens and lipophilic drugs show outstanding skin penetration upon fundamental skin layer, though, their relief rates should be measured to obtain acceptable local concentrations and sustained pharmacological effects. Liposomes are phospholipids based nanocarrier systems in which phospholipid layer use to enclose the aqueous media of drug. This drug delivery described in 1985. Basically, liposomes contain bilayered vesicles having an aqueous media along with one and more phospholipid membranes. Liposomes have the capacity to deliver hydrophilic as well as lipophilic drug molecules due to their exclusive physical features. Fluconazole is abroad spectrum antifungal agent active against number of fungal infections. Encapsulation of Fluconazole in liposomes provides prolonged drug delivery and minimizes the commonly occurring toxic effects. The objective of present work is to prepare Fluconazole liposomes and study the in vitro drug release and stability studies of prepared liposomes.

MATERIAL AND METHODS

Materials

Fluconazole was a gift sample from Ajanta Pharma, Mumbai. Phospholipid (Dipalmitoyl Phosphatidyl choline) was gifted by Torrent Pharmaceuticals Ahmedabad. Cholesterol and ethanol was purchased from Gurudatta chemical suppliers, Satara.

Methods

Preparation of Liposomes: Liposomal formulations were formulated by ethanol injection technique. In ethanol injection technique, the lipidic solution is injected into a spare quantity of aqueous solution. Ethanol mixture was injected slowly to an aqueous solution of the drug that should be encapsulated at
55–65°C. The removal of ethanol forms liposomes. Liposomes produced are heterogeneous in nature (70–190 nm).

Evaluation of Fluconazole Liposomal Preparation

Particle Size Analysis
The size of particle of drug loaded liposomes were defined by (Horiba SZ-100) analyzer, at 28°C. It detects the intensity variations which are caused by particle movement. Each sample was analysed three times.

Zeta Potential Measurement
The zeta analysis of Fluconazole liposomal preparation was measured by Nano-particle analyzer (Horiba, SZ-100, Japan) based on the principle by detecting the intensity variations of light which scattered through a particulate dispersed sample. Laser Doppler micro-electrophoresis was done to detect zeta potential.

Entrapment Efficiency
Entrapped efficiency of prepared liposomes were analyse by centrifugation method. About 5 mL of liposomal dispersion was added in test tube and centrifuged in cooling centrifuge (REMI-Electronics India) at 15,000 rpm for 45 minutes. After centrifugation the solution was detached and diluted with appropriate solvent. The amount of conc. of drug in solution was determined UV-Visible Spectrophotometrically.

Entrapped efficiency was measured using Equation

\[
EE = \frac{W_{\text{drug}} - W_{\text{free drug}}}{W_{\text{drug}}} \times 100 \quad \ldots(1)
\]

Where,

\(W_{\text{initial drug}}\) = Initial weight of drug in the formulation.

\(W_{\text{free drug}}\) = Weight of free drug in the supernatant.

Application of Experimental Design
By using factorial design \((3^2)\) the experimental design was obtained as shown in Table 1.

<table>
<thead>
<tr>
<th>Independent Variables</th>
<th>Response Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration of Lipid ((X_1))</td>
<td>Particle size ((Y_1))</td>
</tr>
<tr>
<td>Concentration of Cholesterol ((X_2))</td>
<td>Entrapment efficiency ((Y_2))</td>
</tr>
</tbody>
</table>

Selection of Optimized Batches
Analysis of design was finding out by using Design Expert V-10 registered software (Stat Ease Inc. Minneapolis). The obtained data were fitted in the software to get polynomial equation, ANOVA, response surface plot (3-D graphs) and contour plots (2-D graphs). Analysis of variance (ANOVA) was used to find irrelevant factors.

Characterization of Optimized Batch

In-vitro Drug Diffusion Study
Skin infusion of fluconazole containing liposome was passed out by using Cellulose membrane, employing modified Franz-diffusion cell. The samples were quantified spectrophotometrically at 271 nm.

Antimicrobial Activity Susceptibility Test
Disk diffusion is adopted technique for the evaluation of antimicrobial activity

Stability Studies
Liposomal preparations of optimized batch were designated for stability studies for 30 days.

RESULTS AND DISCUSSION

Evaluation of Prepared Liposomes (Table 2)

<table>
<thead>
<tr>
<th>Batches</th>
<th>Conc. of Lipid ((X_1))</th>
<th>Conc. of cholesterol ((X_2))</th>
<th>Particle size ((Y_1))</th>
<th>Entrapment efficiency ((Y_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>50(-)</td>
<td>10(-)</td>
<td>677.9</td>
<td>86.01</td>
</tr>
<tr>
<td>F2</td>
<td>50(-)</td>
<td>20(0)</td>
<td>541.9</td>
<td>85.78</td>
</tr>
<tr>
<td>F3</td>
<td>50(-)</td>
<td>30(+2)</td>
<td>489.1</td>
<td>85.43</td>
</tr>
<tr>
<td>F4</td>
<td>60(0)</td>
<td>10(-)</td>
<td>432</td>
<td>84.6</td>
</tr>
<tr>
<td>F5</td>
<td>60(0)</td>
<td>20(0)</td>
<td>380.4</td>
<td>83.89</td>
</tr>
<tr>
<td>F6</td>
<td>60(0)</td>
<td>30(+2)</td>
<td>313.6</td>
<td>83.62</td>
</tr>
<tr>
<td>F7</td>
<td>70(+3)</td>
<td>10(-)</td>
<td>291.7</td>
<td>83</td>
</tr>
<tr>
<td>F8</td>
<td>70(+3)</td>
<td>20(0)</td>
<td>282.8</td>
<td>82.53</td>
</tr>
<tr>
<td>F9</td>
<td>70(+3)</td>
<td>30(+2)</td>
<td>163.7</td>
<td>82.42</td>
</tr>
</tbody>
</table>

Table 2: Effect of variables on particle size and entrapment efficiency of Fluconazole Liposomes.
Polynomial Equation for Particle size

\[Y_1 = +380.02 + 161.78X_1 + 73.53X_2 + 15.20X_1X_2 + 32.5X_1^2 + 7.02X_2^2 \] \((2) \)

2D and 3D responses surface plots presented in Figure 2 and 3 shows that concentration of lipid and cholesterol shows positive effect on Particle size.

Entrapment Efficiency by ANOVA (Figure 4)

Polynomial Equation for Entrapment Efficiency

\[Y_1 = +83.96 + 1.54X_1 + 0.356X_2 + 0.00X_1X_2 + 0.1583X_1^2 + 0.8533X_2^2 \] \((3) \)

2D and 3D response surface plots presented in Figures 5 and 6 shows that concentration of lipid and cholesterol shows positive effect on Entrapment efficiency.

Characterization of Optimized Batch

Particle Size

Optimized batch i.e., Batch F9 shows least particle size than other batches due to presence of less quantity of lipid and cholesterol, shown in Figure 7.

Zeta Potential Analysis

Batch F9 shows negative zeta potential which promises a respectable physical stability of the formulation, avoiding the occurrence of particle aggregation or coalescence. Zeta
potential for optimized batch i.e. F9 was -98.4 mV as shown in Figure 8.

In-vitro Drug Diffusion

Data of release profiles indicates that developed Liposomal formulation were able to release Fluconazole in controlled approach as the cumulative release percentage of Fluconazole over 24 hours ranged from 2 to 86.1%. Batch 9 shows almost 80% drug release within 24 hours, whereas marketed preparation shows 68% drug release, as shown in Figure 9.

Antifungal Activity

Table 3 and Figure 10 show antifungal activity of Liposomal preparation, marketed formulation and control on selected fungi. Marketed formulation shows less activity than liposomal preparation.

Physical Stability Studies

In the present study, stability was performed on the selected formulation. It was stored at 4–5°C ± 1°C. After 1 month it was showed that there was no any variation. This result showed the high stability and suitability of liposomal preparation for the topical fluconazole delivery (Table 4).

CONCLUSION

FLZ-entrapped liposomes were successfully prepared by using ethanol injection method to improve efficacy of drug,
to enhance penetration of drug molecules to the skin and to reduce the possible toxic effects. Study also focus on increasing stability of liposome preparations. The prepared liposomes were formulated and optimized after studying the effect of various factors by applying factorial design. Incorporation of phospholipid forms a bilayer and cholesterol increase the rigidity of bilayer. Decreasing amount of phospholipid and cholesterol shows less particle size. Optimized batch further studied for antifungal activity against candida albicans by comparing with marketed formulation. Liposomal drug shows more drug release than marketed gel. It can be concluded from all the above observations that, these studies suggest a better drug delivery through liposome carriers with an added advantage of improved drug release, drug efficacy, and stability and reduce toxicity and having affinity of encapsulating hydrophilic, hydrophobic as well as lipophilic drugs.

REFERENCES