ABSTRACT

A group of substituted formazine derivatives was prepared through several steps where the first step was the preparation of compound (1) by reacting chloroacetyl chloride with 2-aminopyrimidine, and the second step was the reaction of compound (1) with hydrazine hydrate to obtain the derivative (2) and in the third step was prepared Schiff’s base (3) by reaction of derivative (2) with para-dimethyl benzaldehyde and then a number of formazine derivatives were synthesized by reaction of derivative (3) with a number of substituted aromatic amines. The newly prepared derivatives are distinguished by their melting points (1H-nuclear magnetic resonance (1H-NMR), fourier transform infrared spectroscopy (FTIR)) spectra. The biological activity of the prepared derivatives was studied on two types of bacteria that cause urinary tract and measuring the diameter of the inhibition zone against the growth of these bacteria.

Keywords: Biological activity, Formazan, Schiff bases.

INTRODUCTION

Formazan has one of the following organic chemical formulas N=N-C=N- or N=N-C=N-N depending on the type and structure of the reactive aromatic amines.¹ Formazan compounds have attracted the attention of many researchers because of their wide biological and industrial applications in analytical chemistry and the synthesis of heterocyclic compounds.² The backbone of formazan compounds is rich in nitrogen, and in addition to its intense color, it has been widely used in dyes.³ Formazans are characterized by π-π* transitions, and these transitions are sensitive to the nature of the substituents in the phenyl rings, the nature of organic solvents in solution, and the acidity and basicity of the medium.⁴ Formazan derivatives have different pharmacological activities; therefore, a number of these compounds were synthesized through coupling reactions.⁵ Formazan has a high biological activity, especially on cancer cells, due to the possession of the tetrazolium-formazan system produced by redox reactions.⁶ Formazan compounds were first described at the end of the 19th century.⁷ Biogenic formazans are used as antiviral, antimicrobial, antifungal, and also anti-human immunodeficiency virus (HIV).⁸ The melting point of formazan is generally relatively low despite its large molecular size.⁹

THE METHOD OF WORK

FT-IR spectra, the instrument was of the Shimadzu type (8400S). The heat of melting was modified using (Stewart, UK).

¹HNMR (the device was a Borcher type, running at 400MHz with dimethylsulfoxide (DMSO)-d6).

Prepare Derivative 1.¹⁰ Chloroacetyl chloride 0.04 mol was slowly added to the 2-aminopyrimidine solution 0.02 mol dissolved in dry benzene at a temperature of 0–5°C. The reaction mixture was refluxed for 4 hours, and then the precipitate was filtered and recrystallized by using absolute ethanol.

Prepare of Derivative 2.¹¹ A mixture of compound (2) (0.006 mol) with hydrazine hydrate (0.012 mol) in ethanol 20 mL was refluxed for 4 hours in water bath. After cooling the reaction mixture, the precipitate formed is collected by filtration, dried, and recrystallized with ethanol.

Prepare Derivative 3.¹² Equimolar quantities of compound (2) (0.04 mol), para-dimethyl benzaldehyde (0.04 mol) and drops of acetic acid were refluxed for 3 hours with 20 mL of absolute ethanol. The resultant mixture was cooled at room temperature. Then the obtained precipitate was filtered and washed with water.

Prepare of Derivative (4-8).¹³ A cold stirred solution of different aromatic amine (0.04 mol) previously dissolved in aqueous HCl (5 + 8 mL water) was diazoctized over crushed ice by dropwise addition of cold aqueous solution of NaNO₂ (0.04 mol) with stirring at 0–5°C.
and Leave the mixture for 20 minutes in the refrigerator. This mixture was then poured into a cold solution of compound (3) (0.04 mol) dissolved in dry pyridine (10 mL). The reaction mixture was further stirred for 3 hours, maintaining temperature 0-5 °C. The mixture was then poured into water with continuous stirring. The resultant dark colored solids were filtered and washed with water till free from pyridine, dried, and recrystallized from ethanol. The physical properties of the synthesized compounds 1 to 8 are given in Table 1.

Biological Activity

The culture medium was used (Muller-Hinton Agar) for the purpose of measuring the biological activity of two types of pathogenic bacteria (Escherichia Coli and Staphylococcus aureus) isolated from patients with urinary tract infection in the maternity and children’s hospital in AL-Diwaniyah city.

Bacteria were cultured in the culture medium for about (0.1 μmol) and left to settle for half an hour, then holes were made in the culture medium, and a concentration (0.05mol) of the prepared material was added after dissolving it in DMSO. Another culture dish was used as a control to see the effect of the solvent on bacterial growth. After that, all dishes were left for 15 minutes until the medium was dry, and then placed in the Container for 24 hours. Then, the diameter of the inhibition area was measured in millimeters by using a ruler.

RESULTS AND DISCUSSION

The Derivative (1) (2-chloro-N-(pyrimidin-2-yl) acetamide)

The FTIR data are shown in the range (1641.31, 3344.34, 2879.52, 3087.82, 1672.17, 1618.17) cm\(^{-1}\) to (C = N, NH, Aliphatic C-H, C-H pyrimidine, C = O, C = C) respectively (Figure 1).

Table 1: Physical data of derivatives (1-8)

<table>
<thead>
<tr>
<th>NO.</th>
<th>C(_x)H(_y)ClN(_z)O</th>
<th>Color</th>
<th>MP°C</th>
<th>RF</th>
<th>yield%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C(_6)H(_6)ClN(_3)O</td>
<td>Dark gray</td>
<td>180</td>
<td>0.38</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>C(_6)H(_9)N</td>
<td>Dark yellow</td>
<td>170</td>
<td>0.29</td>
<td>78</td>
</tr>
<tr>
<td>3</td>
<td>C({15})H({18})N(_6)O</td>
<td>Orange</td>
<td>215</td>
<td>0.31</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>C({25})H({22})N(_9)O(_2)S</td>
<td>Dark orange</td>
<td>225</td>
<td>0.35</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>C({20})H({22})N(_10)O(_2)</td>
<td>Dark orange</td>
<td>217</td>
<td>0.25</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>C({22})H({22})N(_9)O(_3)</td>
<td>Dark orange</td>
<td>228</td>
<td>0.14</td>
<td>78</td>
</tr>
<tr>
<td>7</td>
<td>C({21})H({21})N(_9)O(_3)</td>
<td>Dark orange</td>
<td>214</td>
<td>0.52</td>
<td>75</td>
</tr>
<tr>
<td>8</td>
<td>C({21})H({21})BrN(_8)O</td>
<td>Dark orange</td>
<td>219</td>
<td>0.15</td>
<td>77</td>
</tr>
</tbody>
</table>

Scheme 1: Preparation of compounds (1-8)
The 1H-NMR (DMSO-d$_6$) data are shown in the range δ: 10.99 (S, 1H, NH), 4.5 (S, 2H, CH$_2$), 6.97 – 8.69 (3H, CH, pyrimidine ring), 2.5 (DMSO).

The Derivative (2) 2-hydrazineyl-N-(pyrimidin-2-yl) acetamide

The FTIR data are shown in the range (1577.66, 3323.12-3244.05, 2985.60, 3002.96, 1652.88, 1558.38) cm$^{-1}$ to (C=N, NH, C-H, C=O, C = C) respectively (Figure 2).

The 1H-NMR (DMSO-d$_6$) data are shown in the range δ: 10.18 (S, 1H, NH), δ: 4.4 (d, 2H, NH$_2$), 3.5 (d, 2H, CH$_2$), 6.05 – 8.2 (3H, CH, pyrimidine ring), 2.5 (DMSO).

The derivative (3) ((E)-2-(2-(4-(dimethyl amino) benzylidene) hydrazonyl)-N-(pyrimidin-2-yl) acetamide)

The FTIR data are shown in the range (1519.80, 3255.05-3232.47, 2885.31-2970.17, 3002.96, 1604.66) cm$^{-1}$ to (C=N, NH, C-H, C aromatic, C=O) respectively (Figure 3).

The 1H-NMR (DMSO-d$_6$) data are shown in the range δ: 9.1 (S, 1H, NH), δ: 4.4 (T, 1H, NH-N), 3.1 (S, 1H, CH), 3.4 (d, 2H, CH$_2$), 7.7 – 8.32 (m, 4H, Ar-H), 2.5 (DMSO).

The Derivative (4) ((Z)-3-(4-(diethylamino) phenyl)-1-(6-methoxybenzo[d]thiazol-2-yl)-5-(2-oxo-2-(pyrimidin-2-ylamino) ethyl) formazan

The FTIR data are shown in the range (1604.66, 3425.34, 2808.16-2908.45, 3002.96, 1733.12, 1434.94) cm$^{-1}$ to (C=N, NH, C-H aliphatic, C-H aromatic, C=O, N=N) respectively (Figure 4).
The 1H-NMR (DMSO-d$_6$) data are shown in the range δ: 9.43 (S, 1H, NH), δ: 3.72 (T, 1H, NH-N), 3.08 (S, 1H, CH$_3$), 3.19 (S, 1H, OCH$_3$), 3.72 (d, 2H, CH$_2$), 7.76 – 8.72 (m, 7H, Ar-H), 2.5 (DMSO).

The derivative (5) ((Z)-3-(4-(dimethyl amino) phenyl)-1-(4-hydroxy-6-methylpyrimidin 2-yl)-5-(2-oxo-2-(pyrimidin-2-ylamino) ethyl) formazan) (FT-IR) data are shown in the range (1604.66, 3263.33, 2862.17-2908.45, 3139.90, 1735.81, 1519.80, 3417.63) cm$^{-1}$ to (C=N, NH, C-H aliphatic, C-H aromatic, C=O, N=N, OH) respectively.

The 1H-NMR (DMSO-d$_6$) data are shown in the range δ: 9.1 (S, 1H, NH), δ: 8.51 (T, 1H, NH-N), 1.9 (S, 1H, CH$_3$), 3.01 (S, 6H, N(CH$_3$)$_2$), 4.78 (d, 2H, CH$_2$), 9.68 (S, 1H, OH), 7.77 – 8.69 (m, 4H, Ar-H), 2.5 (DMSO) (Figure 5).

The derivative (6) (2-((Z)-(4-(dimethyl amino) phenyl) ((E)-3-(2,4-dinitrophenyl) triaz-1-en-1-yl) methylene) hydrazonoyl)-N-(pyrimidin-2-yl) acetamide) (FT-IR) data are shown in the range (1604.66, 3278.76, 2862.17-2908.45, 3085.89, 1712.67, 1527.52) cm$^{-1}$ to (C=N, NH, C-H) aliphatic, C-H aromatic, C=O, N=N) respectively (Figure 6).
Synthesis and Characterization of Formazan Derivatives from Schiff’s Base and Studying their Biological Activity

The derivative (7) (Z)-3-(4-(dimethyl amino) phenyl)-1-(4-nitrophenyl)-5-(2-oxo-2-(pyrimidin-2-ylamino) ethyl) formazan.

The FTIR data are shown in the range (1620.55, 3278.76, 2862.17-2908.45, 3085.89, 1720.23, 1525.90) cm\(^{-1}\) to (C=N, NH, C-H aliphatic, C-H aromatic C=O, N=N) respectively (Figure 7).

The \(^1\text{H}-\text{NMR}\) (DMSO-d\(_6\)) data are shown in the range \(\delta\): 8.8 (S, 1H, NH), \(\delta\): 6.82 (T, 1H, NH-N), 3.08 (S, 6H, N(CH\(_3\))\(_2\)), 3.19 (d, 2H, CH\(_2\)), 6.84 – 8.71 (m, 8H, Ar-H), 2.5 (DMSO).

The derivative (8) ((Z)-1-(2-bromophenyl)-3-(4-(dimethyl amino) phenyl)-5-(2-oxo-2-(pyrimidin-2-ylamino) ethyl) formazan)

The FTIR data are shown in the range (1615.66, 3278.76, 2862.17-2908.45, 3085.89, 1718.97, 1530.77) cm\(^{-1}\) to (C=N, NH, C-H aliphatic-H aromatic=O, N=N) respectively (Figure 8).

The \(^1\text{H}-\text{NMR}\) (DMSO-d\(_6\)) data are shown in the range \(\delta\): 8.68 (S, 1H, NH), \(\delta\): 6.7 (T, 1H, NH-N), 3.06 (S, 6H, N(CH\(_3\))\(_2\)), 3.14 (d, 2H, CH\(_2\)), 6.79 – 8.52 (m, 8H, Ar-H), 2.5 (DMSO).

Biological Activity Results

Table 2 and images indicate the results of measuring the area inhibition of bacterial growth using solutions of organic substances prepared at a concentration (0.05 mol) (Figure 9-16).

It is clear from Table 2 and images that there is a clear growth inhibition zone against all types of bacteria.
Microorganisms are killed or their growth is inhibited by damaging or preventing the formation of cell walls, by defects in the permeability of cytoplasmic membranes and the physical and chemical composition of protein and DNA in the cell, and by defects in cellular enzymatic activity, as well as by preventing the synthesis of proteins and nucleic acids.15,16

Also, the resistance of any type of bacteria of different sexes to chemical compounds results from the presence of a thick envelope surrounding the bacterial cell. Because it contains a high percentage of fats which prevents these substances from entering the cell or as a result of a mutation in a specific gene that leads to the production of an enzyme that causes resistance of these bacteria to the chemical.15,17 Accordingly, the reason for the effectiveness of the organic compounds prepared in this research against pathogenic bacteria may be due to the following reasons:

These compounds may have the ability to dissolve the lipid layer of the bacterial cell wall, leading to the exudation and destruction of cell fluids. The other reason is the ability of these compounds to form hydrogen bonds through the hydroxyl groups and nitrogen present in the compounds and the water molecules present in the bacterial cell in which water constitutes about (80–90\%) of the cell weight, and this leads to disruption and destruction of the vital function of the cell. For the last reason, it depends on the chelating properties of these prepared compounds and their ability to form coordination complexes with the ions present in the body of the bacterial cell, such as potassium, zinc, calcium, and iron. Which microorganisms need to perform their function.

REFERENCES