
INTRODUCTION
Acute kidney failure has become a concern in recent months, 
especially in children. The percentage of mortality that 
continues to increase causes the need for preventive action as 
soon as possible.1 Generally, these disorders are associated 
with sepsis, impaired cardiac function, and nephrotoxicity of 
drug.2 The administration of treatment to patients bounded 
by patofisiologi complexity and the diagnosis.3 At the same 
time, management and supportive interventions can prevent 
the condition from worsening.4 Intervention can be done 
by maintaining fluid and electrolyte balance and reducing 
exposures that trigger nephrotoxicity.5 Based on data from the 
National Kidney Foundation (NKF), patients with acute kidney 
failure are estimated to reach 10% of the human population. 
Based on data from the Indonesian Ministry of Health, 
from 2022 until October, acute kidney failure in children in 
Indonesia reached 304 cases with a mortality rate of 52%. 

The exact cause of the increase in cases is unknown until 
now, but it is suspected to be caused by the ethylene glycol 
(EG) content in children’s syrup. Ethylene glycol is one of the 
substances that causes many hazardous exposures. The lethal 
dose of EG is 1 to 2 mL/kg in 95% solution, which is equivalent 

to 1500 mg/kg.6 EG be metabolized into glycolic acid and then 
an oxalic acid, which combines with calcium to form the water-
insoluble oxalic acid monohydrate. In large quantities, they are 
stored in the tubules and trigger inflammation of the kidney.7 
Nephrotoxic substances can attach due to kidney function as 
a site of drug transport, metabolism, and excretion, resulting 
in acute tubular injury.8

Renal excretion mediates drug clearance via glomerular 
filtration or tubular secretion. Therefore, tubular cells can 
potentially be exposed to nephrotoxic substances through 
apical contact and cellular absorption.8 Acute injury induced 
by drugs or their metabolites can occur up to 7 days after drug 
use, especially if the drug metabolism is abnormal.9 Since 
1997, Food and Drug Administration (FDA) has approved 
fomepizole (4-methylpyrazole) for EG poisoning. However, 
several countries use other alternatives because of the high 
cost of fomepizole.10 Thiamin, pyridoxine, and folate can be 
used for adjuvant therapy, which can reduce toxic metabolites.11

Alternative therapy continues to be developed to solve 
this problem, especially for stopping AKI with strong 
pharmacodynamic potential. Required an understanding 
of pathology AKI as apoptosis, necrosis, and pyroptosis.12 
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The development approach is carried out through structural 
approaches to fomepizole or ethanol, anti-inf lammatory 
activity, and chelate formation.13 Dendrobium is a potential 
plant with many secondary metabolites, such as bibenzyl, 
alkaloids, sesquiterpenes, and phenantrenes. Various activities 
that have been studied include antioxidants, anticancer 
agents, and anti-inflammatories.14 Dendrobium alkaloids 
(Dendrocarbidamine) have strong anti-inf lammatory 
potential.15

An approach that might be used to overcome ADH 
metabolism in the liver so that it does not produce oxalic 
acid, which is harmful to the kidneys, is to use plants that 
can repair liver damage. D. huoshanense has a higher ability 
than D. officinale, D. henanense, and D. moniliforme to repair 
liver damage caused by CCl4, as indicated by decreased 
activity of alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) in serum, accompanied by decreased 
malondialdehyde (MDA) content and increased superoxide 
dismutase (SOD) activity in the liver.16 The mechanism is 
through Nrf2 signaling so that Nrf2 is released from the Nrf2 
and KEAP1 complexes.17,18 This study aims to find compounds 
that have the potential to be ADH inhibitors from Dendrobium 
using the in-silico method.

MATERIAL AND METHODS

Molecular Preparation
This study used various molecular models: biological activity, 
ADME-Tox (Absorption, Distribution, Metabolism, Excretion, 
and Toxicology), docking, dynamic simulations, and compound 
calculation of the binding energy contained in Dendrobium 
from the KNapSAcK database. Samples were obtained from 
the KNApSAcK family database, which contains compounds 
in various types of Dendrobium. Dendrobium compounds have 
a variety of activities and can be used as natural medicines. 
This study targeted the alcohol dehydrogenase (ADH) enzyme 
because this enzyme, when activated, increases the risk of 
kidney failure. The ADH chosen for virtual screening as the 
receptor is the one in complex with NAD+ (PDB: 1HLD; 
resolution 2.10).19 To identify potential natural compounds, 
94 Dendrobium compounds from the KNApSAcK Family 
Database were used.20 Preparation of ADH receptors by 
removing water molecules and ligands that are not involved 
in the interaction. The next step is to optimize the geometry 
of the steepest gradient approach (100 iterations).
Lapinski’s Rule, Biological Activity, and ADMET 
Prediction
SwissADME (http://www.swissadme.ch/) and Molinspiration 
Web MEEditor 1.16 (https://www.molinspiration.com/) were 
used for computational screening of Lapinski’s rule of 5. To 
predict biological activity against ADH, PASS Online (http://
www.way2drug.com/passonline/) was used with a lower limit 
of 0.3 using the keyword “Alcohol dehydrogenase [NAD(P)+] 
inhibitor.” Protox-II used to predict compound toxicity. (https://
tox-new.charite.de/protox_II/). PreADMET (https://preadmet.
webservice.bmdrc.org/) is used to predict which compounds 

will be absorbed in the intestine.
Molecular Docking
Virtual screening docking of compounds obtained from 
previous screening using Auto Dock Vina in the YASARA (Yet 
Another Scientific Artificial Reality Application) program with 
the academic version. To analyze the interaction between the 
ligand and the YASARA receptor, implement the AMBER03 
force field and Auto Dock 4 Vina as a pose docking algorithm.21 
Of concern in the docking method used is the absence of a 
native ligand that binds to the alcohol dehydrogenase enzyme 
with code 1HLD, so the enzyme’s active site is a matter of 
concern. An approach that can be done using Prank Web 
(https://prankweb.cz/). Binding energy from Auto Dock 4 
Vina at YASARA identifies the best pose; the more positive 
the value, the better the bonding energy.22 The docking bond 
energy equation is as follows.

ΔG = ΔGvdW + ΔGHbond+ ΔGelec+ ΔGtor + ΔGdesol

Information: ΔGvdW = van der Waals; ΔGHbond = H bonding; 
ΔGelec = electrostatic; ΔGtor= torsional free energy when a 
compound transit from the unbound state to the bound state; 
ΔGdesolv = desolvasi
Molecular Dynamics
Molecular dynamics were conducted using YASARA software. 
The selected pH is the physiological pH of the body, so the 
program settings include optimizing hydrogen bonds to 
increase the stability of dissolved ligands and predicting pKa 
to improve the protonation of protein residues. NaCl ions are 
needed to stimulate the body’s physiology, namely 0.9%, and 
Na and Cl ions need to be added to neutralize cell conditions. 
The density of the water used is 0.997 g/mL. Temperature 
simulation using 310 K and 1 atm pressure (NPT ensemble). 
the simulation was run for 20 ns using the AMBER14. Data 
analysis was done using md analyze. The energy binding uses 
the Poisson–Boltzmann method (PBS) without entropy (normal 
mode analysis) in accordance with YASARA guidelines; 
the more positive the binding energy value, the better the 
interaction, the equation used is as follows.

Binding energy (I) = [epotrec(I) + esolrec (I) + epotlig + 
esollig] – [epotcom(I) + esolcomp(I)]

or
BEG(i) = [epotrec(I) + epotlig] - epotcmp(I)

Where I is the position number, epot is the potential energy for 
the complex (epotcmp), free protein (epotrec), or free ligand 
(epotlig), and esolv is the solvation energy for the complex 
(esolcmp), free protein (esolvrec), or free ligand (esollig).23 
Apart from using YASARA, the interaction of the ligand 
with the protein was analyzed using the Discovery Studio 
Visualizer.

RESULTS
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Virtual screening
Virtual screening of compounds from Dendrobium that have 
the potential to inhibit the action of ADH by downloading 
from the KNapSAcK database and obtained 94 compounds. 
The compounds that were successfully obtained were then 
screened in the first stage following the drug-likeness 
model of the Lapinski rule of five using Swiss ADME 
and MolinspirationWebMEEditor 1.16. In this process, 89 
compounds were produced. The second stage involves testing 
ADH inhibitors for biological activity, particularly alcohol 
dehydrogenase [NAD(P)+] inhibitors. At this stage, using a 
threshold of 0.3 and obtaining 18 compounds, the basis of the 
threshold of 0.3 is a compound with computational potential, 
but no laboratory evidence yet. The third step was screening 
for toxicity using ProTox-II, and three compounds were 
obtained, namely o-succinyl benzoic acid, 3,4’-Dihydroxy-5-
methoxybibenzyl, and Gigantol. Moniliformin was excluded 
because it is included in the class II category, so it is dangerous 
if swallowed. The three compounds were continued with a 
docking test for ADH.
Molecular Docking

ADH doesn’t have a Binding cite yet, therefore, the first 
docking step is to look for the binding cite. Prankweb (https://
prankweb.cz/) were used to predict the active side (Figure 2). 
The results obtained for the highest active side have a score 
of 44.14, namely residues No. 46; 47; 48; 57; 58; 93; 116; 
117; 119; 140; 141, which are adjacent to NAD and Zn with 
coordinates X: 1.3828; Y: 62.3674; and Z: 9.0418. Hackey 
predicted the active side of the ADH enzyme, the active side 
is related to hydrophobic bonds. The residue that became the 
active site was 52; 53; 58; 63; 55; 66; 57; 61; 60; 62; 64; 65 
when the ADH enzyme at residue 141 is not methionine19,24. 
Docking was performed on fomepizole as a control and three 
compounds as the selected compound: o-succinyl benzoic 
acid, 3,4’-Dihydroxy-5-methoxybibenzyl, and Gigantol 
(Table 1 and Figure 3).

Residues that become the target of binding sites SER 48; 
LEU 57; HIS 67; PHE 93; LEU 116; PHE 140; LEU 141; and 
CYS 174.
Molecular Dynamics
Molecular dynamics aims to see the stability of the interaction 
between the ligand and the receptor from the RMSD backbone, 
protein-ligand contact, secondary structural changes, and 
RMSF in each bond. The first thing a dynamic molecular analyst 
looks at is the RMSD backbone of the protein. Simulations 
carried out for 20 ns showed only 8.9 ns above 3 Ångström 
and an average of 2.365 Ångström, so this simulation shows 
the stability of alcohol dehydrogenase during the simulation 
(Figure 4A). This figure can be simulated molecular dynamic 
as a form of fomepizole binding model and 3 selected ligands. 
Simulations carried out on fomepizole and the 3 selected 
ligands also show RMSD below 3 Ångström (Figure 4A), 

Figure 1: Flowchart screening inhibitor ADH

Figure 2: The active site of ADH is colored red, NAD is colored 
brown, Zinc is colored purple, and fomepizole is colored green

Table 1: Human intestinal absorption (HIA) probability and toxicological prediction

Compound HIA (%) Hepatotoxicity Immunotoxicity Carcinogenicity Cytotoxicity Mutagenicity

Fomepizole 87,54 0,59 active 0,99 inactive 0,67 active 0,83 inactive 0,71 inactive

o-succinyl benzoic acid 77,98 0,67 inactive 0,99 inactive 0,77 inactive 0,86 inactive 0,9 inactive

3,4’-Dihydroxy-5-
methoxybibenzyl

92,15 0,74 inactive 0,95 inactive 0,67 inactive 0,84 inactive 0,76 inactive

Gigantol 92,39 0,71 inactive 0,64 inactive 0,7 inactive 0,94 inactive 0,74 inactive
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o-succinyl benzoic acid 3,4’-Dihydroxy-5-methoxybibenzyl Gigantol

Figure 3: 3D Interactions between ligands and ADH

Table 2: Docking results and interaction between ligand - ADH

Compound Binding Energy 
[kcal/mol]

Dissociation 
Constant [pM] Donor → Acceptor Distance Close Contact

Fomepizole 4.2620 751,471,616 CYS174:SG → Lig
Lig → PHE93
Lig:C → LEU57
Lig:C → LEU116
Lig:C → LEU141
PHE140 → Lig1:C
Lig → VAL294

5.0753
4.77047
4.78616
4.29499
4.32993
5.29246
5.22189

SER 48 ; HIS 67; ZN 375; NAD 

o-succinyl benzoic 
acid

6.7960 10,434,363 LEU57:HD11 → Lig
Lig → LEU116
Lig → LEU141

2.43826
3.9143
5.31136

SER 48; VAL 58; PHE 93; ASP 115; 
PRO 119; PHE 140; VAL 292; GLY 
293; VAL 294; PRO 295; ALA 317; 
ILE 318; PHE 319; ZN; NAD 

3,4’-Dihydroxy-5-
methoxybibenzy l

7.6870 2,319,286 Lig:H → ILE291:O
Lig:H → GLY293:O
Lig → VAL294
Lig → PRO295
Lig → ILE318
Lig → LEU116

2.19007
2.76741
5.42548
5.45845
4.99565
4.88965

SER 48; LEU 57; HIS 67; PHE 93; 
PHE 140; LEU 141; VAL 292; GLY 
316; ALA 317; ZN; NAD

Gigantol 7.6640 2,411,090.5 Lig:H → ILE291:O
Lig:H → ALA317:O
Lig:H → HIS67
Lig:C → LEU57
Lig:C → LEU116
Lig:C → LEU141
Lig:C → PRO295
PHE140 → Lig:C
Lig → VAL294
Lig → ILE318

2.16057
2.77647
3.18607
4.31817
4.64224
4.72013
4.88005
5.03525
4.9147
4.99288

SER 48; VAL 58;THR 59; ASP 115; 
PRO 119; VAL 292; GLY 293; GLY 
316; ZN; NAD

even lower than ADH in the unbound state, this indicates that 
the bond between fomepizole and three selected ligands is 
stable.25 Solvent-accessible surface area (SASA) is the outer 
surface of the protein ligand that is accessible to solvents. 
Changes in SASA are affected by the ligand occupying the 
binding site. The higher the SASA value, the easier it is for the 
solvent to interact with the ligand-protein complex, but if there 
is a fluctuation in the SASA value; this indicates instability 
between the ligand complex and the protein.26 The dynamic 
simulation results show that the surface area that the highest 
solvent can access is ADH in an unbound state (Figure 4B). The 
highest fluctuation occurs in ADH-Gigantol 403.345 Ångström 
2 at 2.1 ns, this occurs below 5 ns. It can be ignored because it 
is still in the complex equilibrium period between ligand and 
protein.27 In other complexes, fluctuations in SASA values 

were lower than those in ADH without binding, so it can be 
said that the complex between protein and ligand is stable.

The radius of gyration is an analysis to see the compactness 
of protein, or vice versa; the higher the fluctuation value, the 
looser the protein.28 The fluctuation of the ADH protein Rg 
value was higher than 21.567 Ångström at 15.7 ns, and the 
lowest was 20.704 Ångström at 0.6 ns. The Rg value of the 
ligand complex had various fluctuations. The highest ADH-
fomepizole was 21.304 Ångström at 7.2 ns, and the lowest was 
20.64 Ångström at 0 ns, the highest ADH-o-succinyl benzoic 
acid was 21.017 Ångström at 16.8 ns, and the lowest was 20.657 
Ångström at 19.6 ns, ADH-3,4’-Dihydroxy-5-methoxybibenzyl 
has the highest Rg value of 21.187 Ångström at 14.9 ns, and the 
lowest is 20.575 Ångström at 7.3 ns; The highest ADH-3,4’-
Dihydroxy-5-methoxybibenzyl was 21.221 Ångström at 1.2 ns, 
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and the lowest was 20.609 at “o” ns (Figure 4C). Overall the 
delta Rg is still below 1 Ångström, so that the fluctuations in 
the radius of gyration between simulation times are normal. 
Overall the presence of fomepizole and the 3 selected ligands 
stabilizes ADH. This is indicated by lower fluctuations when 
compared to ADH in the non-ligand bound state.

Hydrogen bonding will affect the protein’s conformation, 
affecting the stability of the ligand-protein complex (Figure 
4D). ADH’s hydrogen bond value was 283.90 ± 8.58, and 
the fomepizole complex and 3 ligands had bigger hydrogen 
bonds than ADH. The highest hydrogen bond is ADH-3,4’-
Dihydroxy-5-methoxybibenzyl with a value of 296.54 ± 8.37 
so this ligand complex is stable during the simulation process, 
in line with research conducted by Rahman. A study on Mpro 
from SARS-CoV-2 reveals that protein hydrogen bonds are of 
lower value than protein-ligand complexes.29

Figure 3E illustrates RMSF, namely the stability of the alpha 
carbon of each residue; the lower the value, the more stable 
the interactions that occur between the ligand and ADH.30 The 
figure shows that the interaction between residues that become 
active sites (SER 48; LEU 57; HIS 67; PHE 93; LEU 116; PHE 
140; LEU 141; and CYS 174) has a low value, which is below 
3 Å so that the interaction between the ligand and the ADH 
protein in the active side is stable.31 Fluctuate RMSF values of 
more than 3 Å occur in ADH at ASN 300; ADH-fomepizole 
on LEU 301; ADH-3,4’-Dihydroxy-5-methoxybibenzyl at SER 
298 and ASN 300; and ADH-Gigantol at SER 298 and LEU 
301. The last analysis is the binding energy of each complex. 
The calculation uses the YASARA algorithm; the more positive 
the value, the stronger the interaction.32,33

The average binding energy value of the ADH-fomepizole 
complex is -65.407 KJ/mol, with the lowest value occurring 

(A) (B)

(C) (D)

(E) (F)

Figure 4: Molecular dynamic analysis A: RMSD backbone; B: SASA; C: Radius of gyration; D: Hydrogen bond; E: RMSF; F: MM-PBSA. Blue: 
ADH; orange: ADH-fomepizole; gray: ADH-o-succinyl benzoic acid; gold: ADH-3,4’-Dihydroxy-5-methoxybibenzyl; green: ADH-Gigantol.
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at 11.5 ns, namely -462.141 kJ/mol, and the best occurring at 
0.7 ns, namely 185.731 kJ/mol. The ADH-o-succinyl benzoic 
acid complex has an average binding energy of 118.578 kJ/mol. 
The lowest occurs at 18.6 ns with an energy of -201.083 kJ/mol, 
and the best occurs at 18.9 ns with a 296.755 kJ/mol value. 
The ADH-3,4’-Dihydroxy-5-methoxybibenzyl complex has an 
average binding energy value of -98,611 kJ/mol. The lowest 
occurs at 13.1 ns at -406.091 kJ/mol, and the best occurs at 
5.1 ns with a value of 197.688 kJ/mol. The ADH-Gigantol 
complex has an average binding energy of -15.03 kJ/mol, with 
the lowest value at 16.3 ns at -442.907 kJ/mol and the highest 
at 8.3 ns at 356.055 kJ/mol. Overall the complex bond of ADH-
o-succinyl benzoic acid has the strongest bond, while ADH-
3,4’-Dihydroxy-5-methoxybibenzyl has the weakest bond. 
However, ADH-o-succinyl benzoic acid and ADH-Gigantol 
have stronger bonds than ADH-Fomepizole.

DISCUSSION
Alcohol dehydrogenase is an enzyme that works in the liver. 
This enzyme plays a role in alcohol, aldehydes, and ketones by 
reducing NAD+ to NADH. In cases of acute kidney failure, the 
enzyme substrate is ethylene glycol (EG). EG is broken down 
into glycolic acid and oxalic acid, which react with calcium to 
form oxalic acid monohydrate, which is stored in the tubules 
and causes kidney inflammation.7 The currently approved drug 
as an ADH inhibitor is fomepizole, but the price is relatively 
high, so another alternative is needed.10

One of ADH inhibitor is formamide. Formamide is an 
aldehyde analog compound that is non-toxic. Derivatives of 
this compound are N-heptylformamide, N-benzylformamide, 
N-1-methylheptylformamide and N-cyclopentyl-N-
cyclobutylformamide which are non-competitive enzymes.33 
Binding efficiency molecular docking studies (kcal/mol) gallic 
acid (−5.85), hypophyllanthin (−3.23) and phyllanthin (−2.37) 
were compared with 4-methyl pyrazole (−4.18) using the Auto 
Dock 4 method, and screening site bindings used CASTp.34 
Chloroquine, as a malaria drug, has the ability to inhibit ADH 
in the retinol-retinal interconversion of the eye because ADH 
contains a thiol group.35 Furfural from the hydrolysis of pentoses 
and hexoses has a competitive inhibitory ability against ADH 
with a K(m) value of 1.2 mM more than acetaldehyde of 0.4 
mM36. Cimetidine acts as a competitive or non-competitive 
inhibitor with adjacent constant values, namely reducing less 
than 5% at 10 µM ethanol and acetaldehyde concentrations.37 
In tests on apple slices, nitric oxide (NO) also had the ability 
to inhibit ADH.38 The use of aspirin and salicylates together 
can inhibit ADH either competitively or non-competitively 
on ADH1A/ADH2 and ADH1B2/ADH1B3, with a decrease 
of 75 to 86% and 31 to 52%, respectively. This difference 
occurs based on the docking approach due to the substitution 
of residue number 93.39 Residue number 93 is a binding site for 
docking, and from the research, a bond was formed between 
residue number 93 of ADH and fomepizole, o-succinyl benzoic 
acid, and 3,4’-Dihydroxy-5-methoxybibenzyl using the vina 
docking method. This docking screening resulted in a positive 
binding energy value with the algorithm in YASARA. This 

value indicated a strong bond, so molecular dynamics research 
continued to observe the stability of the interaction between 
the ligand and the receptor and see the bond energy. A plant 
screening has been carried out that has the potential to improve 
kidney disorders, namely Dendrobium. These species are 
D. huoshanense, D. officinale, and D. nobile.40 Therefore, 
screening compounds from Dendrobium that can potentially 
treat acute kidney failure is necessary.

The cause of acute kidney failure is oxalate crystals. These 
oxalate crystals are formed by ADH enzymes that work in the 
liver, so plants are needed to help overcome hepatotoxicity. 
The four Dendrobium species, namely D. huoshanense, D. 
officinale, D. henanense, and D. moniliforme, have the ability 
to prevent hepatotoxicity.41 The mechanism of this species 
is through the Nrf2 signaling pathway. Nrf2 plays a role in 
overcoming toxins that cause hepatotoxicity. Dendrobium 
significantly induces the dissociation of Nrf2 from the Nrf2-
Keap1 complex and promotes the nuclear translocation of 
Nrf2. Furthermore, Nrf2 activation causes expression of the 
catalytic GCLM, GCLR, HO-1 and NQO1, indicating that 
Dendrobium plays a hepatoprotective role through the Nrf2 
signaling pathway, -Keap1 and suppress oxidative stress.17 
D. officinale is also able to protect the liver due to ethanol 
induction by increasing LO2 cell viability; preventing LDH 
release; reducing the secretion of TNF-α, IL-6, IL-1β; and 
reversing the expression of IL-1β, TLR4, caspase 1, TNF-α, 
IL-6 and p-NF-κB.42

Three potential compounds were obtained from the 
screening carried out: O-succinyl benzoic acid, 3,4’-Dihydroxy-
5-methoxybibenzyl, and Gigantol. O-succinyl benzoic acid 
has never been tested on mammals either in-vitro or in-silico 
in relation to pharmacological effects; the existing research 
is antibacterial. O-Succinylbenzoic acid is an important 
biosynthesis in maintaining the life of bacteria, so the formation 
of this compound is an important target for antibacterials. 
O-Succinylbenzoic acid plays a role in the formation of vitamin 
K and bacterial energy but is not present in humans.43,44 ADH 
is an enzyme that works in the liver, the related research in 
this regard is 3,4’-Dihydroxy-5-methoxybibenzyl isolated 
from Arundina graminifolia (D. Don) Hochr which has anti-
hepatic fibrosis ability in an in vitro model with 61.9µg/ mL of 
HSC-T6 cells.45 This compound also has the ability to increase 
cell survival signals (PI3K, Akt, and p70S6K) and induce 
antioxidant (HO-1, NQO-1, and TRX-1)46 when oxidative 
stress occurs when ADH binds to ethylene or diethylene glycol. 
Gigantol plays a role in preventing CCl4-induced liver damage 
through the MAPK/JNK inhibition pathway, the cPLA2 
pathway, 12-lipoxxygenase in platelets, liver leukocytes on 
12-hydroxyeicosetraenoate activation, as well as the pan-LOX 
pathway by inhibiting nordihydroguaiaretic acid.47 Gigantol 
also inhibits the development of liver cancer cells via the PI3K/
Akt/NF-B pathway.47 Gigantol can help prevent liver disease 
by acting as an antioxidant, anti-inflammatory, and inhibiting 
the formation of C5b-9 (liver).48

Gigantol has the ability to inhibit the growth of 
Hepatocellular carcinoma through the mechanism of the 
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HSP90/Akt/CDK1 pathway.49 Based on the molecular dynamics 
carried out, O-succinyl benzoic acid, 3,4’-Dihydroxy-5-
methoxybibenzyl, and gigantol have good interaction stability 
when binding to ADH based on RMSD, Rg, SASA, RMSF, 
and hydrogen bond analysis. This research is only a model, 
but this research can be a reference for further laboratory 
research both in-vitro and in vivo for O-Succinylbenzoic acid, 
3,4’-Dihydroxy-5-methoxybibenzyl and gigantol in inhibiting 
ADH by competitive or non-competitive inhibition models.

CONCLUSION
In in-silico screening for ADH, inhibitors are needed to look for 
substitute drug candidates for fomepizole, where fomepizole 
is the only drug approved as an ADH inhibitor. Screening for 
the Dendrobium family produces three selected ligands, and 
based on molecular dynamics, the three ligands interact stably 
with ADH, but based on energy binding values, starting from 
the strongest, they are o-succinyl benzoic acid, gigantol, and 
3,4’-Dihydroxy-5-methoxybibenzyl.
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