
INTRODUCTION
Arachidonic acid (AA), along with its biproducts are concerned 
with infection & diseases related to inflammation.1,2 The AA 
is metabolized across 3 distinct enzymatic processes, such as 
lipoxygenases LOXs, cytochrome P450 (CYP enzyme), and 
cyclooxygenases COXs, generating active metabolites acting in 
inflammation.3 Prostaglandin belongs to a class of biologically 
active compounds acquired from AA in the cyclooxygenase 
pathway, also known as eicosanoids. COX-1 and COX-2 
enzymes bring eicosanoids closer to completion. All tissues 
have the constitutional COX-1 enzyme, however, only explicit 
COX-2 enzyme is intimated at the site of inflammation. 
COX-1 controls functions correlated with housekeeping, 
whereas COX-2, associated with the maintenance of cardio 
and renovascular health and platelet aggregation, produces 
pro-inflammatory prostaglandins.4,5 Leukotrienes (LTs), a 
biologically active metabolite, were described by Bengt I. 
Samuelsson.6 LT receptor antagonists and arachidonate 5-LOX 

(or ALOX5) were discovered to treat illnesses related to type 
one hypersensitivity reactions, including allergies and asthma. 

Eicosanoid pathways (COX and LOX) constitute key 
therapeutic targets since they’ve been implicated in various 
clinical disorders via recognized receptors and metabolites.7,8

 
The cytochrome CYP family contains enzymes of several 
subclasses.9 Nonetheless, AA’s metabolism includes a 
very noticeable class. Despite the fact that many CYP 
enzymes perform both hydroxylase and epoxygenase 
functions and produce a variety of final derivatives. The 
CYP enzymes’ -hydroxylase activity get conversion of 
AA into hydroxyeicosatetraenoic acids (HETEs). 20- 
hydroxyeicosatetraenoics by-product, primarily associated 
with vascular activity, however, it is also associated with 
inflammation and possesses pro-inflammatory properties. 
The CYP2J and 2C families produce10 CYP enzymes. 
Epoxyeicosatrienoic acid (EETs; 5,6,8,9,11,12, along with 
14,15-EET) or AA epoxides are found inside hepatocytes and 
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cardiomyocytes. The solvent Epoxide Hydrolase (sEH) enzyme 
produces Dihydroxyeicosatrienoic acids (DHET), or diols, 
from the transformation of EETs.11,12

Pathway and Their Metabolites 

The COX Pathway
In the above context, COX is expressed in most cells and is 
not the limiting factor. But due to high reactivity towards 
oxidation, free arachidonic acid is unavailable. AA exists in 
the form of phosphatidylethanolamine, phosphatidylcholine, 
and phosphatidylinositides.13 The COX enzymes, producing 
such as prostaglandins (PGs), Prostanoids, and Thromboxane 
A2 (TXA2), became initial enzymes to be identified as 
metabolizing AA. AA is liberated through a semi-permeable 
plasma membrane with the enzyme Phospholipase A2 (PLA2) 
support and metabolized through COX to PGG2 and PGH2. 
These are further converted into PGs using particular PG 
synthases. All of the NSAIDs inhibited the COX pathway 
(Figure 1), which led to a substantial decrease in PG 
production.14 Although considerable arachidonic acid is capable 
of being generated by the effects of phospholipase C on diacyl-
glycerol. More than 30 distinct isoforms of PLA2 are known 
to exist, and they can be broadly categorized as (i) cytosolic 
(cPLA2), which is activated by calcium concentrations of M, 
(ii) calcium-independent (iPLA2), or (iii) secretory (sPLA2), 
which is activated by mM concentrations of Ca. The COX 
enzyme catalyzes the second stage of prostanoid production. 
COX-1, as well as COX-2 are both isoforms. COX-1, the 
main source of prostanoid synthesis during housekeeping, 
is naturally produced in all cells. COX-2 (also identified as 
PTGS2) is a protein that is activated by stimuli generated by 
inflammation, growth factors, and hormones and is believed 
to be the principal origin of prostanoid synthesis throughout 
proliferative disorders like cancer and inflammation.15 Though 
not cleared for autoregulation, both contribute equally during 
inflammation. The only difference present is the spatial 
arrangement among COX-1 and COX-2 within the energetic 
site. However, similarity exists for converting arachidonic 
acid into prostanoids, oxidation forming PGG2 followed 
by peroxidation forming PGH2. PGH2is further broken by 
synthase/isomerase enzymes to prostanoids. PGH2 as well 
as PGG2 were substrates enabling the production of certain 
PGs such as PGE2, PGI2, PGD2, PGF2, and TXA2.16-18 The 
nature of prostanoids synthesis is established from the varying 
levels of the above-discussed metabolic enzymes inside the 
cells detected at places of inflammation. PGD2 is largely 
produced by mast cells, while macrophages produce PGE2 and 
TXA2.19 Whereas PGF synthase, thromboxane synthase, as 
well as the cytosolic (c) PGE synthase (PGES) isozymes exist 
in three different partners with whom COX-1 most regularly 
pairs, there are various advantages in partnering among COX 
as well as downstream synthases. The (PGIS) prostaglandin I 
synthase as well as microsomal (m) PGES isozymes, as both 
are significantly activated by COX-2, cytokines, including 
tumor promoters, feed PGG2/H2.20-23 Among the initial 
investigations revealed upon the discovery of 2 COX isoforms 

consist of a screened of presently found NSAIDs those were 
associated with different impacts on COX-1 versus. COX-2 
inhibition, and a few were discovered having a 20- to 70-fold 
greater degree of selectivity preferences24 known today. 
The oxidative cyclization that occurs to the central 5 carbon 
molecules in PUFA produces prostaglandins.25 By interfering 
with PGI2 production, resulting in the absence of COX-2, 
which regulates systolic blood pressure, homeostasis, as well 
as thrombogenesis. Following the process, NO-dependent 
vascular dysfunction occurs.26 The COX-3 isoform, COX-3, is 
created by the same COX-1 gene; however is silent in humans 
due to splicing alternatives.27-28 In accordance with research, 
COX-3 appears more frequently in the brain as well as heart 
microvesicles compared to the major arteries.29,30 Prostaglandin 
(PG) endoperoxide H synthases are critical enzymes in the AA 
cascade that catalyses the conversion of AA to PGs as well 
as thromboxane (TXA).31,32 Diet can influence prostaglandin 
as well as thromboxane production. Adding linoleic acid six 
supplements into your diet increases PG biosynthesis.33 COX-1, 
including its physiologically active PGs ensure the integrity 
of the mucosal epithelium of the intestines and stomach, and 
their suppression can result in gastric injury, hemorrhage, 
and ulceration, just like it does with typical NSAIDs.34,35 

COX-2, in conjunction with COX-1, defends the mucosa of 
the digestive tract. The repeated administration of NSAIDs, 
causes a slew of issues in the digestive tract 36 including burning 
and ulceration.37 However, COX-2 selective inhibitors tend to 
cause lesser gastrointestinal damage than standard NSAIDs.38

In fact, aspirin along with nonsteroidal anti-inflammatory 
medicines (NSAIDs), especially COX-2 inhibitors, are effective 
for both inflammation and pain medications.39,40 Furthermore, 
endothelial suppression of PGI2 synthesis may provide adverse 
effects of COX-2 inhibitors related to cardiovascular disorder. 
PGI2 is produced by endothelial cells, whereas platelets produce 
TXA2.41,42 Aspirin is hypothesised to lessen the risk of ischemic 
events that include strokes and cardiac arrest by inhibiting 
blood clotting. Pneumovascular hypertension is treated with 
prostaglandin derivatives. The 1st generation COX-2 inhibitors 
such as valdecoxib along with rofecoxib, were introverted from 
the trade43due to a effects that included cardiovascular issues, a 
higher likelihood of stroke, as well as cardiac arrest.44 Giannella 
et al.45 reported that indomethacin may successfully inhibit 
fast intestinal fluid secretion as well as Salmonella infection 
in rhesus monkeys. Eckmann et al.46 just found and showed 
that incubating intestinal epithelial cells using Salmonella 
significantly increases COX-2 initiation.
The Lox Pathway
Four different hydroperoxy-eicosatetraenoic acids (HPETEs; 
5, 8, 12, and 15-HPETEs) produced from the resulting LOX 
Enzymes, which are 15-LOX, 12-LOX, 8-LOX, as well as 
5-LOX, depending on, where the molecular oxygen is inserted 
into the AA. The HPETEs are subsequently converted into 
molecules those are biologically active such, lipoxins (LXs), 
hepoxilins, and LTs or reduced to monohydroxy eicosatetraenoic 
acids (HETEs) through peroxidases enzymes.47



Recent Updates on a Few Heterocyclic Derivatives showing COX-2 Inhibition

IJDDT, Volume 13 Issue 3, July - September 2023 Page 1080

The majority of research has focused on the LOX enzyme 
5-LOX, which adds O2 to AA at C-5 position producing 
5-HPETE as well as LTA4, the precursor to the LTs (LTB4, 
LTC4, LTD4, as well as LTE4) 48. Moreover 5-LOX, were 
previously believed to be in the cytosol, it was later shown 
that it had the ability to traverse the nuclear envelope when 
phosphorylated.49,50 Since then, it has been established that the 
main site of LT synthesis is the nuclear membrane. 5-HPETE 
is broken down through LTA4 hydrolase to synthesize LTB4.51 
FLAP, an activating protein52 is a membrane-spanning protein 
having three transmembrane domains that is a group of the 
membrane-associated proteins, in the eicosanoid as well as 
glutathione metabolism group, and contains LTC4 synthase as 
well as microsomal PGE2 synthase, are essential for the catalytic 
action of 5-LOX.53 Although it is generally believed that 
transformation of AA into 5-LOX by FLAP &/or acts like set, 
for 5-LOX, it is not quite clear what FLAP performs in 5-LOX 
reactions.54 5-LOX-derived active mediators particularly 
oxo-ETEs are produced from the HETEs through microsomal 
dehydrogenase in form of polymorphonuclear leukocytes 
(PMNLs), being considered as a strongly active eosinophillic 
chemoattractant.55 Increasingly LTs are recognised such as a 
significant contributor to inflammation.56 They are produced 
by an enzyme called as LTA4 hydrolase, a cytosolic protein 
additionally each zinc-dependent peptidase along with LTA4 
hydrolase activity. Though LTA4 hydrolase acts as a peptide 
biologically, is not understood yet, and it restricts inflammation 
in pulmonary system by degradation of chemotactic peptide 
along with proline-glycine-proline (PGP).57 Consequently, 
during a period of inflammation, degradation of chemotactic 
peptide PGP occurs by LT4 hydrolase while also producing 
the chemotactic lipid mediator LTB4. There are two known 
primary deactivation mechanisms for LTB4 inactivation. LTB4 
is deactivated by granulocytes and hepatocytes oxidising its 
C-20 via the -oxidation pathway,58 which is carried out by the 
CYP enzymes CYP4F3 within granulocytes & CYP4F1 or two 
within hepatocytes.59 The 12-hydroxydehydrogenase LTB4 
enzyme,60 also included in the deactivation of other eicosanoids 
like LXA4 & PG48, converts 12-keto-LTB4 into inactive LTB4 
in other organs. In terms of signalling, LTC4 works on smooth 
muscle contraction via the CysLT1 and CysLT2 receptors. 
LTB4, unlike LTC4, operates through the LTB4R2 (BLT2) 
and LTB4R (BLT1) receptors.61 Additionally their capability 
to produce dihydroxyeicosatetraenoics. Additionally, 5-LOX, 
12-LOX, and 15-LOX, all create dihydroxyeicosatetraenoic 
acids (diHETEs), oxo-ETEs, and LXs.62 Similarly 12-LOX, 
transforms 5(S)-HETE into  14(R),15(S)-diHETE, and 
5(S),12(S)-diHETE to produce extra-platelet LTA4.63,64 5-LOX 
produces LTA4 in neutrophils which is getting converted into 
platelets, at the same time, 12-LOX produces either LXB4 /
LXA4.65,66 There are having 2 isomorphs of 15-LOX present in 
mammalian cells, those are 15-LOX-2 along with 15-LOX-1. 
Arachidonate 15-lipoxygenase gene as well as the functional 
enzyme metabolizes AA into LXB4, LXA4, & 15- oxo-ETEs 
is encoded by 15-LOX-1. Additionally, 15-LOX-2, produces 

8S-HETE and 15-oxo-ETE.67,68 When 15-diHPETE is used 
as a substrate, 15-LOX-1’s efficiency is 20 times more than 
12-LOX’s, resulting in LXB4 as the catalytic product.69

The Cytochrome Phosphate-450 Pathway
The CYP genes conceal for a group of mixed-functional 
monooxygenase enzymes, including individual enzymes more 
than 6000.70

The metabolism of xenobiotics which are lipophilic in 
nature is the most-explained role of the Cytochrome Phosphate 
pathway. Till-date important biological activity of EETs in 
heart, liver, endothelial cells, and kidney. A lots of genetic & 
external factors change the CYP expression and the function 
of their bioactive products.71 The cardiovascular system is 
regarded as producing CYP enzymes from hydroxylated 
HETEs (6-, 17-,8-,19-, and 20-HETE). 

AA epoxides, also known as EETs, exhibit anti-
inflammatory, cardioprotective, and vasodilatory properties. 
They can also affect vascular smooth muscle migration, a 
crucial stage in atherosclerosis and vascular remodelling. Every 
one of the four EET regioisomers are having stereoisomers, 
for example, 11,12-EETs has 11®,12(S)-EET & 11(S),12®-
EET, along with the various stereoisomers describe varied 
effects.72 It is already considered that the cardiovascular system 
is shielded by CYP-derived EETs from transient ischemia-
reperfusion damage, persistent non-ischemic cardiomyopathy, 
and hypertensive.73

In-silico Approaches (Computer-Aided Drug Designing)
Before manufacturing, an essential computational evaluation 
of the affinity towards the binding of enzyme blockers is being 
included in Computer-Aided Drug Design (CADD) models.74 
In-silico assisted drug designing aspects were implemented 
for development of COX-2 blockers strongly, creating stable 
anti-inflammatory along with anticancer drug entities.75 There 
are so many CADD methods, employed for modeling and 
visualizing potent COX-2 inhibitors. It helps in studying and 
altering the ligand or substrate analog interacting with the 
enzyme or receptor more precisely and occupying important 
sites, obtaining in better specificity and potency. The approach 
is termed as drug design based on structure. Advanced CADD 
procedures are being used in the choosing and designing of the 
best correspondent.76 Recently, implementing the aspects based 
on structure for regular screening and molecule designing 
resembles to be intricate. The chance of using such techniques 
for the creation of appropriate and strongly active blockers 
is made possible by the availability of numerous crystal 
arrangements of atoms complexed with COX-2 inhibitors. 
Upon comparing the experimental and calculated relative 
binding affinities towards structurally similar inhibitors with 
COX-2 infers that QSAR, computational technology along 
with FEP methods provided semi-quantitative, qualitative as 
well as quantitatively agreement sequentially with obtained 
results. CADD methodology thereby speeds ups the drug 
discovery along with the development procedure and makes 
it as affordable cost.77
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Heterocyclic Derivatives Showing Cox-2 Inhibition

Tetrazole based derivatives
Synthetic organic heterocyclic compounds contain tetrazole, a 
five-membered ring with 4 nitrogen and 1carbon atoms. Tetrazole 
has a broad spectrum of biologically and pharmacologically 
active implementations because of its highly consistency of 
Nitrogen, and multi-electron conjugating system.78

Depending upon isosteric replacement of group SO2NH2 
biologically in Celecoxib and Rofecoxib with less acidic 
tetrazole moiety many tetrazole derivatives are designed by 
Labib et al. and team. Two different divisions of compounds 
were planned namely isoxazoles (1, 2) along with pyrazoles 
(3,4,5,6,7) given in Table 1, Compound 1 to 7 shows potencies 
of vitro COX-2 inhibition in an Enzyme-linked immunosorbent 
assays (ELISA assay) with in vivo anti-inflammatory activity, 
in vitro selectivity, and high water solubility. Compound 2, 4, 6 

with the remarkable COX-2 selectivity index discussed in table 
1 shows closeness with reference drug celecoxib and compound 
2 and 6 have shown extremely less ulcerative properties among 
one of the most known side effects of NSAIDS. Through proper 
analysis and research it was concluded that Methoxy groups 
on the benzene ring are more efficient than hydrogen groups.79

Further experiments and updates in technology lead to 
the development of more tetrazole-based derivatives showing 
remarkable inhibition of COX-2 activity Al-Hourani et al. 
reported several derivatives of tetrazoles, in the span of 7 years 
showing potent activity. Compound 7 showed potent inhibition 
of COX-2 though the potency was found less than the already 
existing marketed drug celecoxib.80 Modifications in the methyl 
sulfonyl unit CH3SO2X of the tetrazole derivatives lead to the 
development of new compounds 8,9,10 on researching the 
potency of these compounds, compound 8,9showed moderate 
inhibition of COX-2 activity.81 Anita et. al reported EIA assay 

Table 1: Tetrazole derivatives showing anti- inflammatory activity selectivity towards COX-2

S No. Compound name Structure IC50 (µmol/L) SI

1 1
R = H

Isoxazole

0.045 251.11

2 2
R = -OCH3

0.041 302.44

3
3
R1 = H
R2= H

Pyrazole

0.064 164.06

4
4
R1 = H
R2= -OCH3

0.043 297.67

5
5
R1=-COCH3
R2 = H

0.065 167.69

6
6
R1=-COCH3
R2 = -OCH3

0.039 317.95

7 7 2.0 210

8
8
R1 =-NH2
R2=-CH2OH
n = 0

      

24 0.87

9

9
R1 =CH3
R2=CH2OH
n = 1

5.2

10

10
R1 = -CH3
R2=-NH2
n = 1

> 67
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compound 10 which has increased its activity and selectivity 
towards COX-2. Due to the methylene spacer at the C-1, 
position their activities have increased towards enzyme COX-2 
up to 200-folds.82

Indole based derivatives 
Indole is a heterocyclic aromatic organic compound with 
the general formula C8H7N. A five-membered pyrrole ring, 
and six membered benzene rings are fused together to form 
a bicyclic fused structure. It is a substance with significant 
pharmacological value and is used to screen a variety of 
receptors.83 Hayashi et al. reported that, as a selective COX-2 
inhibitor, compound 11 (Table 2) derived from indomethacin 
considered as a basic structure which showed strong selective 
COX-2 blocking activity in human cells. Also, it has effective 
as an anti-inflammating agent when administered orally and 
with it is potent within a living organism showing inhibition in 
fluid retention (edema) 84Compound 12 (Table 2) synthesized 
by Kaur et al. was containing substitution on the C-3 position 
of indole which resulted in selective COX-2 inhibition. Using 
molecular docking techniques, the C = N bonded with phenyl 
CF3 substituent remains present close by the COX-2 action 
site and an essential hydrogen bond was formed with amino 
acid His90, very important for COX-2 blocking.85Compounds 
13,14,15, (Table 3) were also reported which were containing 
toluene sulfonyl group at the position N-1 and presence 
of dipeptide groups at position C-3, for checking COX-2 
inhibition. Compounds 13 and 14 were reported for the same 
in vivo anti-inflammation-based activity as such of diclofenac. 
Compound 15 was reported to be more potent.86On adding 
sulfonamide, at the C-5 position of indomethacin and two 
4-Fluro benzyls provided derivatives of indole with selective 
COX-2 inhibiting moeities were substituted at C-2 and C-3 
positions.87A novel C-3, N-1 substituted derivative of indole 
16 (Table 2) was designed using bio isosteric replacement drug 
design strategy. The indole-containing analogs or derivatives 
were mainly modified on the basis of the arrangement of atoms 
of indomethacin. As a consequence, the successor of Acetic 
Acid at the position C-3 of indomethacin with different other 

groups is considered to be an efficacious approach to improve 
these potency and perceptiveness. Moreover, changes at C-2 
and N-1 positions have shown positivity as well. The above-
discussed compounds derived from indole were tested and 
evaluated for their selectivity and IC50 values tabulated below.
Pyrazole derivatives 
Pyrazole contains π-electrons in excess. It is being identified 
as primary compound in synthesis of chemicals, specifically 
for the invention of novel COX-2 inhibitors. Medicinal 
entities used clinically contain pyrazole as the basic structure 
are celecoxib, antipyrine, aminopyrine, and metamizole.88 

Celecoxib (as a COX-2 inhibitor containing pyrazole base) was 
discovered for first time using Claisen condensation following 
a cyclo-condensation reaction to give an overall production 
of 50%.89

Bansal et al. have synthesized a compound22 (Table 3) 
containing pyrazole fragment in its basic structure, it had 
shown more affinity towards COX-2 inhibition. Molecular 
docking suggested formation of a vital H-bond among O2, 
-No2

- group & the H+ content of aminoacid Arg120, essential 
for interacting with COX-2 enzymes.90 Xu et al. and team91 
by considering a typical sulphonamide fragment containing 
selective COX-2 inhibitor celecoxib, derived few pyrazole 
analogs with N-aryl sulfonate, compound 25–29 (Table 3) 
showed strong COX-2 inhibitory activity through both in 
vitro and in vivo researches. In the year span from 2011 to 
2012 El-Sayed et al.92,93 derived various pyrazole derivatives 
namely 23,24and 30 (Table 4) increased anti-inflammatory 
activity along with COX-2 inhibitory activity. Molecular 
docking studies indicate that compound 23 and 24 bind to the 
reactive site of COX-2, as a selective COX-2 blocker, SC-558. 
Whereas compound 30 forms deep bond within the pocket of 
COX-2 and forms a hydrogen bond with Arg513, and Gln192, 
consequently with COX-2 inhibition. By using molecular 
docking for calculating the strength between the ligand and 
Arg513, required for COX-2 inhibition were examined through 
unusual f lexible fragments by Tewari et al. and group94 

selectivity index (Table 4) for compounds 31and 32. In 2020, 
various halogenated tri-aryl-pyrazoles were produced based on 
the arrangement of celecoxib’s atoms. Due to the availability 
of a halogenated aryl ring, which influences the selectivity 
and activity and is absent in celecoxib, three fluorinated 
compounds—numbers 33, 34, and 35—exerted good efficacies 
in COX-2 inhibition assay when performed in in-vitro 
manner.95 In order to inhibit COX-2 and 15-lipoxygenase, an 
unique class of 1,5-diaryl pyrazoles was created. Specifically, 
36 exhibited strong anti-inflammatory action.96 Compound 37 
designed by Mohammed et al. contains an acylamino linker 
in the compound, responsible for COX-2 inhibition and potent 
edema inhibition (Table 3).97 A hybridization strategy aiming 
for dual inhibitory action towards COX-2/5- LOX. Celecoxib, 
licofelone, sulindacsulfide, pyridone, and their combined 
active groups were used to create the pyrazole sulfonamide 
derivative compound 38, which was created to meet the 
binding specifications for both enzymes. Leu338 and Tyr341 
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Table 2: Indole derivatives showing anti-inflammatory activity selectivity towards COX-2

SNo. Compound Structure IC50 (µmol/L) SI

1 11 0.009 -

2 12 0.32 >312

4 13 0.006 351

5 14 0.099 440

6 15 0.54 24 

7 16 67± 6% (50 µmol/L) -

8 17 7.59 5.16

9
18
(X = H, F, Cl, 
Me,OMe,COOMe,
COOEt) R = 

0.09–0.27 

4.07–6.33

10 19

R =
0.4 

11 20

R =
0.31 

12 21
X = H, Cl

R =

0.15 (X = H)

0.09 (X = Cl)
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Table 3: Pyrazole derivatives showing anti-inflammatory activities and selective COX-2 blocking

SNo. COMPOUND STRUCTURE IC50
(µmol/L) SI

1 22 0.31 > 222

2 23

0.45 111.1

3 24

4

25
R1 = -CH3
R2 = H
R3 = H

0.0011 455

5

26
R1 =-CH3
R2 = I
R3 = H

6

27
R1 = -CH3
R2 = H
R3 = I

7

28
R1 = -CH3
R2 = H
R3 = Cl

8

29
R1 = -Ph
R2 = H
R3 = H

9 30 0.26 192.3

10 31
R = H 16.8 0.5100

11 32
R = CH3
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12
33
R = H 0.049 253.1

13
34
R = -OCH3

14 35 0.054 214.8

15 36 - 4.89

16 37 1.76 11.1

17 38                       
R = 

0.4 29.73

R = 

 0.01

344.56

18

39
R1 = OMe, 
SO2Me, OEt
R2 = H, OMe
R3 = Cl, F, Br

0.043–0.17 50.6–311.6

19

40
R1 = H, F, Cl, 
Me, OMe
R2 = H, F, Cl

1.09–2.10 63.56–
80.03
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were hydrophobic targets for the aryl ring, and the amino 
acids Tyr341, and Arg106 were targets for the -COOH group, 
which interacted with the ASC of COX-2 in H-bond, & ionic 
path ways, successfully. The H-bond was developed by the 
sulfonamide connecting to residue of Ser339.98 The researchers 
found that compared to indomethacin, fluorinated pyrazole 
derivative 39 had improved gastrointestinal profile and higher 
anti-inflammatory effectiveness. Also, they looked at the effects 
of para-halogen substitution, methylsulfonyl (-SO2Me) and 
alkoxy substitutes (on ortho and para positions) upon COX-2’s 
phenyl ring blocking activity. Those alterations resulted in 
strong interactions with the main amino acid present at the 
ASC of COX-2. Impact of change in the electron-donating & 
electron- withdrawing groups of the phenyl rings on blocking 
action was studied, and f luorinated pyrazole displayed 
outstanding efficacy similar to celecoxib but with a higher SI. 
The nitrogen atom of the pyrazole ring, -SO2Me, and -SO2NH2 
groups were first implicated in multiple H-bond interactions 
inside the ASC,99 according to molecular docking of the tri aryl 

pyrazoles. Anti-inflammatory entities having dual inhibitory 
action may inhibit COX-2 or LOXs. Deracoxib, Celecoxib, 
Tepoxalin, and Lonazolac are examples of NSAIDs used 
in treating cancer & inflammation.100,101 Abdelazeem et al. 
inferred urea- &- amide-linked derivatives of diaryl-pyrazole 
41, 42 having double inhibition effectiveness towards COX-2 & 
HER-2, they possess high anti-inflammatory functions against 
edema synthesized in treating inflammation and cardiovascular 
disorders by degrading EETs. The strong pharmacophores 
12-(3-adamantan-1-yl-ureido)-dodecanoic acid, celecoxib, 
SC-558, & GSK2256294 are joined to create a hybrid diaryl-
pyrazole molecule that has a diarylpyrazole group with 
urea and amide connections. This compound has a more 
favourable cardiovascular profile which is more potent than 
that of celecoxib and less risk of cardiovascular toxicity.102A 
sequence of pyrazole derivatives linked to amino-phosphonate 
group 43 replacing R alongwith naphthalene on the pyrazole 
ring, in place of thiophene leads high blocking effectiveness, 
especially when the N-1 pyrazole phenyl ring situated in 
p-position (–F > –SO2NH2> –Br).103The researchers evaluated 

21 41

R = 

1.24 – 4.12 2.85 – 7.03

22 42

23

43
R1=thiophene-
2-yl, 
naphthalen-1-yl
R2 = H, F, Br, 
SO2NH2
R3 = H, F
R4 = H, Cl, Br, 
OMe
R5 = H,OMe

0.22 – 5.84 5.84 - 
179.18

24

44
R1=Br, F, Cl, 
OMe, Me, CF3
R2 = phenyl, 
4-bromophenyl 
phenyl, 
4-bromophenyl 
methyl

0.28–6.32 5.41–
172.32

25 45

               

R = Ph 0.32
4.84–
115.82

R = Me 4.75
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numerous substituted compounds 44,45 those are having 
several substitutions but the substituent of 4-bromophenyl 
phenyl at R2 position & methoxy group (R1) on meta position 
monitored higher blocking effectivity towards COX-2.104

Oxadiazole Derivatives
Oxadiazole exists in three isomers, namely 1,2,4, 1,2,5-& 
1,3,4-oxadiazole, having several pharmacological effectiveness 
like anti-viral, antibacterial, anti-tumor, and antioxidant effects. 
Three groups have previously detailed how COX-2 inhibitors 
with an oxadiazole group are made.105 As summarized in 
(Table 4), El-Sayed et al. designed new oxadiazole compound 
46, which showed well known COX-2 selectivity & blocking 
upon comparision with celecoxib.106 Grover et al. discovered a 
series of oxadiazole-comprising derivatives namely47,48,49,50. 
These results ensured that tert-butyl is an essential group 
for increasing COX-2 inhibition along with selectivity, an 
alternative aspect for studies.107

Among several derivatives 2-[(5-((1Hindol) methyl)-1,3,4-
oxadiazol-2-yl) thiol] N-(6-ethoxybenzothiazol2-yl) acetamide 

51 containing benzothiazole & thiazole moieties showing 
COX-2 inhibition selectively108 which shown significant 
inhibition of EGFR expression when compared with that using 
erlotinib.109

Derivative of Pyrrolo[3,4-d]pyridazinone 52 possessing 
4-aryl1-(1-oxoethyl)piperazine as active site was documented 
by Szczukowski et al. Molecular docking and spectroscopic 
analysis clearly indicating the interactions of H-bond among 
the COX-2 ACS having, Arg208, and Lys211 were commonly 
by the nitrogen atom, & carbonyl group of the pyridazine 
moiety, sequentially.110

CONCLUSION
The AA, along with its byproducts, are of huge concern with 
relation to inflammatory processes. COX-2 is an enzyme that 
catalyzes the synthesis of PGs during inflammation and is an 
essential pharmaceutical focus regarding anti-inflammatory 
moieties. The main objective of this review is to bring light 
on synthetic heterocyclic derivatives having effective COX-2 
inhibition as well as other enzymes active during inflammation 

TABLE 4: Oxadiazole derivatives showing anti-inflammatory activities and COX-2 inhibition selectively

S No Compound Structure IC50 (µmol/L) SI
1

46 0.041 µmol/L 89.72

4 47

R = Cl
0.74 74.31

5 48

R = NO2

0.48 132.83

6 49

R = NO2

0.81 67.96

7 50

R = tBu
0.89 68.10

8

51 37.5 1.96

9

52

X = C, N

R = Ph, pentyl

6.8–15.0 -

These few drugs have been formed and are still on going works over them for better results.
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such as LOX, EGFR, PDE5 and anti-inflammatory effectiveness. 
Molecular designing of COX-2 inhibitors synthetically with 
the assistance of CADD has accelerated the process. Studies 
on the chemistry of these structures helped in guessing the 
higher potency, selectivity and minimal adverse effects as noted 
from traditionally marketed NSAIDs. However, further studies 
and investigations are essential for the better understanding 
required for market approval and mass application.
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