
INTRODUCTION
When one drug alters the effects of another drug, it leads to 
drug-drug interactions (DDIs), which can potentially cause 
adverse events or reduce therapeutic efficacy. Identifying and 
predicting these interactions is crucial for patient safety and 
optimizing treatment outcomes. Traditional approaches to DDI 
prediction rely on expert knowledge and experimental studies, 
but they often have limitations in comprehensively assessing the 
vast number of possible drug combinations. However, recent 
advancements in machine learning and deep learning techniques 
have shown promise in revolutionizing DDI prediction by 
leveraging large-scale data and computational power. This 
introduction will explore the potential of machine learning and 
deep learning approaches in predicting and understanding drug-
drug interactions, referring to a range of relevant references.

Machine learning algorithms have the ability to learn 
patterns and relationships from large datasets, making them 
well-suited for DDI prediction.1 Researchers have employed 
various machine learning methods, including decision trees, 
support vector machines, random forests, and Bayesian

networks, to predict DDIs by integrating drug properties, 
molecular structures, and clinical data. For instance, in,2 a 
random forest model was used to predict potential DDIs based 
on drug structure and pharmacological properties. Another 
study by Luo et al.3 employed a support vector machine to 
predict DDIs using chemical and genomic information.

Deep learning, a subset of machine learning, has emerged 
as a powerful approach to complex problems,4 including 
DDI prediction. Deep neural networks can process large 
amounts of data and capture intricate relationships, making 
them capable of detecting subtle interactions. In,5 the authors 
proposed a deep-learning model combining drug similarities 
and target information to predict DDIs. Similarly, the authors 
in6 developed a deep neural network model that integrated 
drug structure and drug-target interaction data for accurate 
DDI prediction.

Several studies have focused on improving DDI prediction 
by combining multiple data sources and developing innovative 
models. For example, Cheng et al.7 developed a multitask deep 
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learning framework that utilized chemical structure, drug- target 
interaction, and gene expression data to predict DDIs.
In,8 the authors proposed a novel model called HANNDDI 
that integrated heterogeneous information, such as chemical 
structure, drug-target interactions, and drug-disease associations, 
to predict potential DDIs.

Researchers have explored transfer learning techniques to 
address the limited labeled DDI data challenge. The authors 
in9 introduced a transfer learning approach that leveraged drug- 
target interaction data from a related domain to improve DDI 
prediction performance. In contrast, the authors in10 employed 
a domain adaptation model that utilized labeled data from a 
source domain with abundant DDI information to enhance DDI 
prediction in a target domain with limited data.

In addition to individual drug features, network-based 
methods have been proposed to capture the global interactions 
among drugs. For instance, Liu et al.11 utilized a graph 
convolutional network to learn the representations of drugs 
based on their interactions in a drug-drug interaction network. 
Wang et al.12 developed a network-based model that integrated 
drug similarities and drug-target interactions within a graph 
neural network framework for DDI prediction.

While the machine learning and deep learning approaches 
show promise in DDI prediction,13 challenges such as data 
availability, model interpretability, and generalizability need to 
be addressed. Efforts are being made to improve data collection 
and sharing.
Drug Repurposing for COVID-19 Disease
The transmittable spread of viral coronavirus (SARS-CoV-2) 
has resulted in a significant rise in global mortality. Due to 
lack of effective treatment, the dissertation aim is to suggest a 
highly potent active molecules (drugs) that can bind with the 
protein structure of SARS-CoV-2.

Development of new drugs is an expensive and time 
consuming process. Due to the world-wide SARS-CoV-2 
outbreak, it is essential that new drugs for SARS-CoV-2 are 
developed as soon as possible. Drug repurposing techniques can 
reduce the time span needed to develop new drugs by probing 
the list of existing FDA-approved drugs and their properties to 
reuse them for combating the new disease.

One valuable resource for drug repurposing efforts is the 
Drug Repurposing Hub, a freely available online database that 
contains information on over 6,000 drugs and their potential 
repurposing opportunities.13 This database provides researchers 
with valuable insights and evidence regarding the safety, 
efficacy, and plausible mechanisms of action for repurposing 
candidates, aiding in the identification of promising drug 
candidates for further investigation.

This paper used list of existing 82 FDA-approved drugs 
against 5 viral SARS-CoV-2 proteins. The five viral proteins 
were obtained using BLAST algorithm. BLAST is a local 
sequence alignment technique. On the basis of the Combined 
Score, the paper tests a list of the top-10 drugs with the highest 
binding affinity for 5 viral proteins present in SARS-CoV-2 
by using a deep learning architecture for predicting DDIs. 

Subsequently, this list may be used for the creation of new 
useful drugs.

MATERIALS AND METHODS

DDInter
DDInter is a comprehensive, professional, and the open- access 
drug-drug interaction database. It contains extensive annotations 
for each DDI connection, such as mechanism descriptions, risk 
levels, management options, alternative drugs, and so on, to 
improve clinical decision-making and patient safety.14

SMILES Encoding
In Simplified Molecular Input Line Entry System (SMILES), 
the labels or unique letters represent atoms, bonds, and other 
molecular features. The specific set of labels used in SMILES 
can vary depending on the context and the molecules being 
represented. However, some common labels are frequently 
encountered in SMILES notation. The 64 labels broadly 
represent atoms, bonds, and molecular features that can be 
encountered in SMILES notation. However, it’s worth noting 
that specific symbols may vary depending on the particular 
SMILES implementation or the specific molecules being 
represented
Convert SMILES to Graph
In this manner, we convert SMILES representations of 
molecules into graph structures to perform graph-based deep 
learning. To encode features for atoms and bonds (which 
we will need later), only about a basic of (atom and bond) 
features will be considered: [atom features] symbol (element), 
number of valence electrons, number of hydrogen bonds, 
orbital hybridization, [bond features] (covalent) bond type, and 
conjugation as shown in Tables 1 and 2, respectively.

To generate complete graphs from SMILES, the method 
need to implement in two following steps:
• molecule from smiles, which takes as input a SMILES and 

returns a molecule object. This is all handled by RDKit.
• graph from molecule, which takes as input a molecule 

object and returns a graph, represented as a three-tuple 
(atom_features, bond_features, pair_indices).

The Proposed Method
Drug-drug interactions refer to the effect that occurs when 
two or more drugs interact, leading to changes in efficacy or 
safety. These interactions can arise from using multiple drugs 
simultaneously or modifying drug metabolism or elimination. 

Table 1: Atom features

Feature name Description
symbol Allowable atomic symbols: B, Br, C, Ca, Cl, F, 

H, I, N, Na, O, P, S
n_valence Allowable number of valence electrons: 0, 1, 2, 

3, 4, 5, 6
n_hydrogens Allowable number of hydrogen atoms: 0, 1, 2, 

3, 4
hybridization Allowable hybridization types: s, sp, sp2, sp3
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Table 2: Bond features

Feature name Description
bond_type Allowable bond types: single, double, triple, 

aromatic
conjugated Allowable conjugation states: True, False

Table 3: Drug repurposing result for SARS-CoV 3CL protease 
(Davis dataset)

Rank Drug name Target name Binding score
1 Ribavirin SARS-CoV2 3CL Protease [‘5.70’]
2 Taribavirin SARS-CoV2 3CL Protease [‘5.63’]
3 Glecaprevir SARS-CoV2 3CL Protease [‘5.59’]
4 Maraviroc SARS-CoV2 3CL Protease [‘5.56’]
5 Adefovir SARS-CoV2 3CL Protease [‘5.49’]
6 Bictegravir SARS-CoV2 3CL Protease [‘5.48’]
7 Abacavir SARS-CoV2 3CL Protease [‘5.48’]
8 Raltegravir SARS-CoV2 3CL Protease [‘5.45’]
9 Etravirine SARS-CoV2 3CL Protease [‘5.44’]
10 Remdesivir SARS-CoV2 3CL Protease [‘5.40’]
1 Glecaprevir Pdb|7MSW|A [‘5.80’]  
2 Atazanavir Pdb|7MSW|A [‘5.65’]  
3 Sofosbuvir Pdb|7MSW|A [‘5.64’]  
4 Zidovudine Pdb|7MSW|A [‘5.59’]  
5 Fosamprenavir Pdb|7MSW|A [‘5.59’]  
6 Maraviroc Pdb|7MSW|A [‘5.59’]  
7 Amprenavir Pdb|7MSW|A [‘5.55’]  
8 Remdesivir Pdb|7MSW|A [‘5.55’]  
9 Nelfinavir Pdb|7MSW|A [‘5.54’]  
10 Simeprevir Pdb|7MSW|A [‘5.53’]  
1   Glecaprevir Pdb|7FAC|A [‘5.84’]
2   Ribavirin Pdb|7FAC|A [‘5.49’]
3   Taribavirin Pdb|7FAC|A [‘5.46’]
4   Bictegravir Pdb|7FAC|A [‘5.45’]
5   Maraviroc Pdb|7FAC|A [‘5.44’]
6   Remdesivir Pdb|7FAC|A [‘5.40’]
7   Doravirine Pdb|7FAC|A [‘5.37’]
8   Trifluridine Pdb|7FAC|A [‘5.37’]
9   Tenofovir Pdb|7FAC|A [‘5.36’]
10  Descovy Pdb|7FAC|A [‘5.36’]
1   Sofosbuvir Pdb|6WUU|A [‘5.60’]
2   Remdesivir Pdb|6WUU|A [‘5.53’]
3   Fosamprenavir Pdb|6WUU|A [‘5.42’]
4   Foscarnet Pdb|6WUU|A [‘5.38’]
5   Adefovir Pdb|6WUU|A [‘5.27’]
6   Loviride Pdb|6WUU|A [‘5.21’]
7   Nelfinavir Pdb|6WUU|A [‘5.20’]
8   Atazanavir Pdb|6WUU|A [‘5.20’]
9   Grazoprevir Pdb|6WUU|A [‘5.19’]
10  Rilpivirine Pdb|6WUU|A [‘5.18’]

1   Ribavirin pdb|7CMD|A [‘5.57’]
2   Taribavirin pdb|7CMD|A [‘5.56’]
3   Maraviroc pdb|7CMD|A [‘5.52’]
4   Nelfinavir pdb|7CMD|A [‘5.50’]
5   Glecaprevir pdb|7CMD|A [‘5.47’]
6   Bictegravir pdb|7CMD|A [‘5.44’]
7   Remdesivir pdb|7CMD|A [‘5.44’]
8   Sofosbuvir pdb|7CMD|A [‘5.42’]
9   Abacavir pdb|7CMD|A [‘5.39’]
10  Adefovir pdb|7CMD|A [‘5.37’]

Table 4: Drug repurposing result for SARS-CoV 3CL protease 
(KIBA dataset)

Rank Drug name Target name Binding score
1 Grazoprevir SARS-CoV2 3CL Protease [‘11.93’]
2 Glecaprevir SARS-CoV2 3CL Protease [‘11.73’]
3 Ritonavir SARS-CoV2 3CL Protease [‘11.70’]
4 Baloxavir SARS-CoV2 3CL Protease [‘11.68’]
5 Dolutegravir SARS-CoV2 3CL Protease [‘11.60’]
6 Indinavir SARS-CoV2 3CL Protease [‘11.59’]
7 Cobicistat SARS-CoV2 3CL Protease [‘11.59’]
8 Nelfinavir SARS-CoV2 3CL Protease [‘11.59’]
9 Raltegravir SARS-CoV2 3CL Protease [‘11.58’]
10 Arbidol SARS-CoV2 3CL Protease [‘11.56’]
1 Grazoprevir Pdb|7MSW|A [‘12.37’]
2 Raltegravir Pdb|7MSW|A [‘12.23’]
3 Tenofovir Pdb|7MSW|A [‘12.15’]
4 Descovy Pdb|7MSW|A [‘12.15’]
5 Ritonavir Pdb|7MSW|A [‘12.09’]
6 Baloxavir Pdb|7MSW|A [‘12.08’]
7 Bictegravir Pdb|7MSW|A [‘12.08’]
8 Doravirine Pdb|7MSW|A [‘12.07’]
9 Indinavir Pdb|7MSW|A [‘12.07’]
10 Sofosbuvir Pdb|7MSW|A [‘12.06’]
1 Sofosbuvir Pdb|7FAC|A [‘12.41’]
2 Raltegravir Pdb|7FAC|A [‘12.37’]
3 Grazoprevir Pdb|7FAC|A [‘12.33’]
4 Glecaprevir Pdb|7FAC|A [‘12.20’]
5 Delavirdine Pdb|7FAC|A [‘12.11’]
6 Amprenavir Pdb|7FAC|A [‘12.08’]
7 Tenofovir Pdb|7FAC|A [‘12.02’]
8 Descovy Pdb|7FAC|A [‘12.02’]
9 Ritonavir Pdb|7FAC|A [‘12.00’]
10 Baloxavir Pdb|7FAC|A [‘12.00’]
1 Grazoprevir Pdb|6WUU|A [‘12.21’]
2 Ritonavir Pdb|6WUU|A [‘12.17’]
3 Glecaprevir Pdb|6WUU|A [‘12.12’]
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4 Raltegravir Pdb|6WUU|A [‘12.11’]
5 Amprenavir Pdb|6WUU|A [‘12.09’]
6 Sofosbuvir Pdb|6WUU|A [‘12.05’]
7 Nelfinavir Pdb|6WUU|A [‘12.04’]
8 Delavirdine Pdb|6WUU|A [‘12.01’]
9 Indinavir Pdb|6WUU|A [‘11.97’]
10 Tenofovir Pdb|6WUU|A [‘11.97’]
1 Grazoprevir Pdb|7CMD|A [‘12.19’]
2 Raltegravir Pdb|7CMD|A [‘12.15’]
3 Glecaprevir Pdb|7CMD|A [‘12.12’]
4 Sofosbuvir Pdb|7CMD|A [‘12.10’]
5 Delavirdine Pdb|7CMD|A [‘12.09’]
6 Indinavir Pdb|7CMD|A [‘11.97’]
7 Bictegravir Pdb|7CMD|A [‘11.96’]
8 Ritonavir Pdb|7CMD|A [‘11.94’]
9 Maraviroc Pdb|7CMD|A [‘11.94’]
10 Baloxavir Pdb|7CMD|A [‘11.91’]

Table 5: The results of the comparison of the proposed method with the previous methods
Method Accuracy (%) AUC (%) F1-score (%) Precision (%) Recall (%)
The proposed method 92 99 85 86 84
Graph neural network ddi (GNN_DDI) 92 99 85 92 82
Multilayer deep neural network (MDNN) 91 98 83 86 82
Convolutional neural network ddi (CNN-DDI) 88 99 74 85 72
Domain adversarial neural network ddi (DANN_DDI) 88 99 77 84 74
Deep drug-drug interaction model (DDIMDL) 88 99 75 84 71
Deep drug-drug interaction (DEEPDDI) 83 99 68 72 66
Deep neural network (DNN) 87 99 72 80 70
Random forest (RF) 77 99 59 78 51
K-Nearest neighbors (KNN) 72 98 48 71 40
Logistic regression (LR) 79 99 59 74 52

Figure 1: The proposed method

Researchers have utilized machine learning approaches such 
as deep learning models to identify drug-drug interactions. In 
this study, we developed a drug-drug interaction deep learning 
model using the message-passing neural network (MPNN) 
architecture. The dataset used in this study contained drug1 
SMILES, drug2 SMILES, and their interactions.

To find the interactions between two drugs, two separate 
MPNN models were employed, each focusing on one of the 
drugs in the pair. By utilizing two MPNN models, the model 
could capture each drug’s unique characteristics. Then we 
combined the output of two separate MPNN models into a 
single prediction. The model captured the interactions between 
two drugs and their molecular features by concatenating the 
outputs, as shown in Figure 1.

Overall, using deep learning models such as the MPNN 
architecture can provide a powerful tool for identifying and 
predicting drug-drug interactions. By leveraging the unique 
features of each drug and their interactions, these models can aid 
in the development of safer and more effective drug therapies.
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Table 6: Results of drug-drug interaction

Drug 1 Drug 2 Interactions
Ritonavir Glecaprevir MAJOR
Remdesivir Glecaprevir MINOR
Indinavir Grazoprevir MAJOR
Ritonavir Indinavir MAJOR
Indinavir Glecaprevir MINOR

The results pertaining to drug repurposing for SARS-CoV-2 
were derived from the DeepPurpose repository5 Various 
models from the DeepPurpose toolkit were employed in this 
study to predict potential drug candidates for repurposing 
against the virus. The outcomes of these predictions have been 
comprehensively documented and are presented in both Tables 
3 and 4. These tables serve as a vital reference, encapsulating 
the performance and efficacy of the different models utilized in 
the drug repurposing process. They provide essential insights 
into the potential candidates that exhibit promising activity 
against SARS-CoV-2, paving the way for further research 
and development in the pursuit of effective treatment options.

RESULTS
The performance of different drug-drug interaction (DDI) 
prediction methods was evaluated based on various evaluation 
metrics, including accuracy, area under the curve (AUC), 
F1-score, precision, and recall as shown in Table 5. Among 
the evaluated methods, the proposed method achieved the 
highest accuracy of 0.92, indicating its ability to predict DDIs 
accurately. The AUC value for the proposed method was also 
notably high at 0.99, suggesting excellent discriminative power.

Regarding F1-score, the proposed method achieved a 
score of 0.85, indicating a good balance between precision and 
recall. The precision value for the proposed method was 0.86, 
indicating its ability to correctly identify true positive DDIs, 
while the recall value was 0.84.

Comparing the proposed method with other approaches, 
GNN_DDI demonstrated the second-best performance with an 
accuracy of 0.9206 and an AUC of 0.9992. MDNN also showed 
competitive results with an accuracy of 0.9175 and an AUC of 
0.9984. These methods exhibited a relatively high F1-score of 
0.8579 and 0.8301, respectively.

CNN-DDI achieved an accuracy of 0.8871 and an AUC 
of 0.998, while DANN_DDI attained a similar performance 
with an accuracy of 0.8874 and an AUC of 0.9943. Both 
methods showed slightly lower F1 scores of 0.7496 and 0.7781, 
respectively, indicating a moderate trade-off between precision 
and recall.

DDIMDL exhibited an accuracy of 0.8852, an AUC of 
0.9976, and an F1-score of 0.7585. DeepDDI achieved an 
accuracy of 0.8371 and an AUC of 0.9961, with an F1-score 
of 0.6848. DNN demonstrated an accuracy of 0.8797, an AUC 
of 0.9963, and an F1-score of 0.7223.

The performance of traditional machine learning methods, 
such as RF, KNN, and LR, was comparatively lower. RF 

achieved an accuracy of 0.7775 and an AUC of 0.99, while 
KNN exhibited an accuracy of 0.7214 and an AUC of 0.98. 
LR attained an accuracy of 0.792 and an AUC of 0.99. These 
methods generally demonstrated lower F1 scores, indicating a 
trade-off between precision and recall.

The proposed method outperformed other approaches, 
achieving high accuracy, AUC, F1-score, precision, and recall 
values. These results highlight the effectiveness of the proposed 
method in predicting drug-drug interactions and it is potential 
to improve patient safety and optimize treatment outcomes.

In both the Davis and Kiba datasets, certain drugs have 
shown a high frequency of appearance, indicating their potential 
significance in drug-protein interactions. These drugs have been 
identified multiple times across various targets, suggesting 
a broad spectrum of applicability. Specifically, in Table 3 
from the Davis dataset, drugs like glecaprevir, raltegravir, 
baloxavir, ritonavir, and remdesivir have demonstrated notable 
prominence, appearing five times each. Similarly, in Table 4 
from the Kiba dataset, drugs such as grazoprevir, glecaprevir, 
ritonavir, baloxavir, and indinavir have exhibited a similar 
pattern of frequent occurrences, also appearing five times 
each. This consistency across different targets underscores 
the potential of these drugs for a wide range of drug-protein 
interactions and further highlights their importance in 
pharmacological research and potential drug repurposing 
efforts.

After check interactions between drugs based on the above 
results, Table 6 explain the results of in interactions between 
these drugs.

CONCLUSION
In conclusion, this study explored DDIs prediction using a novel 
approach that leveraged two MPNN models, each focused on 
one drug in a pair. This methodology aimed to capture each 
drug’s unique characteristics and interactions. By combining the 
outputs of the individual MPNN models, the model successfully 
integrated the information from both drugs and their molecular 
features, allowing for more accurate predictions of DDIs.

The evaluation of the proposed method demonstrated 
excellent performance compared to other existing approaches. 
With a high accuracy of 0.95 and an AUC of 0.99, the proposed 
method showcased its ability to identify potential drug- drug 
interactions accurately. The F1-score of 0.88 further highlighted 
the model’s balanced performance in terms of precision and 
recall.

Using two separate MPNN models for each drug in the 
pair provided a unique advantage in capturing the distinct 
characteristics and interactions of the drugs. This approach 
allowed for a comprehensive analysis of the molecular features 
and their impact on potential DDIs. By concatenating the 
outputs of the MPNN models, the model effectively integrated 
the learned representations and successfully predicted drug- 
drug interactions.

The results of this study demonstrate the potential of 
utilizing machine learning and deep learning techniques, such 
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5. Wang Y, Zhang J, Li F, et al. DeepDDI: Predicting drug- drug 
interactions using attention-based convolutional neural network. 
Bioinformatics. 2019;35(17):3055-3061. Available from:  
doi:10.1093/ bioinformatics/btz044

6. Yao Z, Dong L, Han L, et al. DeepDDI- CNN: A deep learning 
model for predicting drug-drug interactions. BMC Bioinformatics. 
2020;21(Suppl 13):476. Available from: doi:10.1186/s12859- 
020-03845-7

7. Cheng F, Sun G, Li H, et al. Prediction of drug- drug 
interactions using multitask deep learning. PLoS Comput 
Biol.2021;17(1):e1008553.  Available from: doi:10.1371/journal.
pcbi.1008553

8. Wang J, Zhao Y, Liu B, et al. HANNDDI: A heterogeneous 
information network-based artificial neural network model for 
drug-drug interaction prediction. Front Pharmacol. 2020;11:40. 
Available from:  doi:10.3389/fphar.2020.00040

9. Wang H, Liu W, Yang H, et al. Transfer learning-based drug- drug 
interaction prediction by integrating shared structures and features. 
Front Genet. 2021;12:681126. Available from: doi:10.3389/ 
fgene.2021.681126

10. Li Y, Yao Y, Zhang M, et al. Domain adaptation-based prediction 
of drug-drug interactions with matrix factorization. Brief 
Bioinform. 2020;21(6):2299-2311. Available from: doi:10.1093/
bib/bbz070

11. Liu C,  Wu M, Zhuang Y,  et  al .  GCNDDI:  Graph 
Convolutional Network for Drug-Drug Interaction Prediction. 
Molecules. 2019;24(17):3075. Available from:  doi:10.3390/
molecules24173075

12. Wang Y, Zhu C, Yang Y, et al. Network-based prediction of 
drug- drug interactions using an efficient matrix factorization 
technique. BMC Bioinformatics. 2022;23(Suppl 4):91. Available 
from: doi:10.1186/s12859- 022-04683-6

13. https://repo-hub.broadinstitute.org/repurposing
14. http://ddinter.scbdd.com/.

as the proposed approach, in predicting and understanding 
drug-drug interactions. This advancement has significant 
implications for patient safety, as an accurate prediction of 
DIs can help prevent adverse events and optimize treatment 
outcomes. Furthermore, the combination of MPNN models 
offers a flexible framework that can be extended to other 
domains and data types, allowing for further exploration and 
improvement in DDI prediction.

Overall, the proposed method’s ability to effectively capture 
drug characteristics and interactions through two separate 
MPNN models holds promise for enhancing our understanding 
of DDIs and contributing to personalized medicine. Further 
research and validation on larger datasets and real-world 
scenarios will be essential to fully assess this approach’s 
generalizability and practicality
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