
INTRODUCTION
Nanobiotechnology spans a spacious range of disciplines, 
including electrical devices, nutriments, workstation science, 
drugs, strength, transmission, transit, and the atmosphere.1-3 
Significant advancements in nanobiotechnology have enabled 
precise regulation and utilization of components by nanometric 
dimensions. Tiny materials, characterized by dimensions 
smaller than 100 nm, play a pivotal role in various applications.4 

In biomedicine, nanotechnology is primarily employed for 
designing and developing nanocarriers that can effectively 
deliver therapeutic agents with precision.5,6 Nanodrug, an 
intersection of nanotechnology, biological, and pharmaceutical 
research, is instrumental in screening and the administration 
of drugs, aiming to enhance efficacy and reduce toxicity7,8 for 
improved medical outcomes.9,10

Colloidal particles, solid nanocarriers ranging in diameter 
between from 10 to 1000 nm, consist of the two synthetic 
and natural polymers, presenting a potential alternative to 
liposomal colloidal carriers.11 Many medicinal agents are 
linked to tiny particles to modify pharmacokinetic (PK) and/
or PD properties of drugs.12,13 Numerous nanometer-sized 
medication preparations has been granted authorization among 

health-related studies.14,15 Approved and investigational drug 
types include ultrafine crystal preparations, lipid nanocarrier, 
non-carbon-based nanoparticles (NPs), polymerized, Metallic 
compounds, dendrimeric materials, micelle-based systems and 
polypeptides.16-18 Liposomes and polymers are the predominant 
NPs employed in proven formulations,14-17 with liposomes 
playing a crucial role in efficient smart drug administration.19 

The success of drug delivery relies on sustained release and 
stability at the nanometer scale.20,21 Liposomal colloidal drug 
carriers, known for their dimensions, assurance, capacity to 
entrap diverse drugs with biological compatibility and serve 
as cost-effective alternatives to polymer compounds.22 Solid 
nanoparticles of lipid (SLNs), a subset of lipid nanoparticles, 
offer diverse therapeutic applications, positioning them as usual 
messengers to conventional colloidal micro particles.

Pathogens or parasites, encompassing protozoa or 
helminths, are widespread contributors to digestive tract 
disorders, malnourishment, iron deficiency and allergic 
reactions. Primary contact involves ingesting contaminated 
food, water, or vectors.23-25 Table 1 summarizes effectively 
treating a diverse range of medically and veterinary significant 
parasites poses a critical challenge. Conventional drugs for 
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pathogenic diseases are often costly, toxic, and prone to 
undesirable side effects.26-28 Consequently, the pursuit of 
developing efficient drugs for parasitic disease treatment 
is ongoing. Nanotechnology has been integrated into the 
pharma field to create effective drug dosage forms for several 
pathogenic conditions like T. gondii infection,29,30 Kala-azar 
(Visceral Leishmania),31-36 Trypanosomel infection41 as 
well as plasmodium infection.37-40 Encapsulating standard 
medications within nanostructured carriers, like lipidic 
carriers, offer the potential to design new drug therapies in 
addition to increased efficacy and lower toxicity in inhabitant 
organisms than conventional drugs. The present review study 
explores broad factors, formulations, and evaluation strategies 
of SLNs to deliver. plant-based product or molecules,  for the 
effective therapeutic management of parasitic infections in 
humans.
Key facets of Solid Lipid Nanoparticles: Compositional 
Architecture and Functions 
Over the years, various colloid vesicles, including liposomes, 
polymer microspheres and emulsifying systems has been 
designed.42-44 Surrounded by these innovative formulations, 
Lipid-based nanoparticles obtain garnered significant 
attention as a substitute to novel colloidal delivery systems 
for resultant therapeutic outcomes.45 In the early ‘90s, Lipid-
based nanoparticles were presented as conventional colloidal 
delivery systems,46 with sizes ranging from 50 to 1000 nm, 
positioning them as sub-micron colloidal vehicles.44 The 
notable advantages of SLNs include an abundant area at the 
surface, enhanced durability, and higher drug entrapment 
attributes, which contribute to improved pharmaceutical 
efficacy.47 Additionally, SLNs exhibit superior control over 
release compared to liquid lipids, making them particularly 
advantageous for parenteral drug delivery applications.48 Lipid 
arrangement, composed of physiological lipids, decreases SLN 
unwanted effects and enhances the penetration and absorbing 
of hydrophobic drug candidates in the GI tract.49,50 SLNs 
consist of solid containing core of lipid exhibiting higher 
melting point encoated by phospholipids as a safer surfactant 
boundary.51,52 This lipid component in SLNs encompasses 
fatty acids, saturated monoacid triglycerides, waxes and partial 
glycerides. To ensure safety and efficacy of this carrier system, 
the toxicological profile of SLNs acts crucially for production 
as well as application. Based on the encapsulation site of drug 
molecule, SLNs exhibit three different dimensions classified by 
their production methods: (1) Shell-enriched with Drug model 
2) Core- enriched with Drug model (3) Homogeneous matrix 
model depicted in Figure 1.53

Toxicological profile holds significance in the development 
and function of SLN systems.54,55 Prior to pre-clinical and 
clinical studies, a thorough toxicological assessment involving 
both in-vitro and in-vivo assays is necessary.56

SLNs potentially carry a variety of drug molecules, 
leveraging their advantages like suitability, biodegradability, 
and tiny size, making SLNs suitable for drug delivery to the 
liver.57,58 Owing to their enhanced solubility and dissolution 

rate, SLNs can expedite the initial phases of drug action as 
shown in Figure 2.53

New advancements in the field of SLNs highlights its 
potential application for lingual and sublingual routes, CNS 
delivery, parenteral delivery, delivery, dermal delivery, and 
serving as vectors for gene transfer.49,59-62 Another advantage 
of SLNs lies in their ability to modulate drug release profiles.42 

Factors influencing drug delivery from SLNs include particle 
shape and size, concentration of surfactant and polymorphism 
of SLNs.48,63 The solid structure of SLNs comprises compatible 
ingredients that shield therapeutical components from chemical 
disruption. Additionally, the initial burst of drug from SLNs 
can extend bioavailability and minimize bursts by enhancing 
drug solubility in the water phase.64,65

Various technologies are employed to perform the 
characterization of SLNs. Such as TEM, SEM, STM, FFEM, 
AFM, and DLS.66,67 The amount of drug entrapped can be 
analysed using UV spectrophotometry and HPLC.68

The site of drug carriers within SLNs can impact its release. 
Specifically, the drug release from the inner core of SLNs is 
more rapid than when the therapeutic drug carrier is present in 
the lipid nucleus. The advantages of SLNs are assessed through 

Table 1: An overview of medically significant parasites and the 
associated diseases they cause.

Parasite Name Disease Caused Body Area Affected

Plasmodium falciparum, 
P. vivax, P. malariae

Malaria Red blood cells, liver, 
spleen

Entamoeba histolytica Amoebiasis Intestines

Giardia lamblia Giardiasis Small intestine

Trypanosoma brucei 
gambiense, T. brucei 
rhodesiense

African 
sleeping 
sickness

Nervous system, 
lymph nodes, blood

Trypanosoma cruzi Chagas disease Heart, digestive 
system, nervous 
system

Leishmania donovani, L. 
infantum, L. major

Leishmaniasis Skin, mucous 
membranes, internal 
organs

Schistosoma mansoni, S. 
haematobium

Schistosomiasis Intestines, bladder, 
lungs, liver

Fasciola hepatica Fascioliasis Liver, bile ducts

Taenia solium, T. saginata Taeniasis Intestines

Echinococcus granulosus, 
E. multilocularis

Hydatid disease Lungs, liver, other 
organs

Ascaris lumbricoides Ascariasis Intestines

Trichuris trichiura Trichuriasis Intestines

Enterobius vermicularis Enterobiasis 
(Pinworm 
infection)

Intestines, perianal 
area

Toxoplasma gondii Toxoplasmosis Various organs, fetus 
(in pregnant women)

Trichomonas vaginalis Trichomoniasis Vagina, urethra (men)



Therapeutic Prospects of Solid Lipid Nanoparticles for Parasitic Infections

IJDDT, Volume 14 Issue 1, January - March 2024 Page 449

in-vivo and ex-vivo assays, including the characterization of 
drug entrapment efficiency,69 determination of the % of drug 
release,70 pharmacokinetic model,71 animal studies,72,73 PDI,74 
zeta size and potential,75 thermo-gravimetric analysis,76 and 
cell lines using MTT colorimetric assay.77

Production of Solid Lipid Nanoparticles
Numerous formulation approaches have been developed 
to prepare SLNs as reported  in Table 2.78,79 Adopting an 
appropriate composition and developing of the technique 
depends on factors like particle size that are crucial for 
improving drug entrapment of therapeutic agents. SLNs 
are formulated using lipids, emulsifiers, and solvents, often 
involving precursors like emulsions, micro emulsions, and 
micelle solutions. Hot homogenization, melt dispersion,80 

phase inversion temperature (PIT),81 and solvent evaporation-
diffusion from emulsions82 are some of the fundamental 
emulsion methods. The coacervation method83 is frequently 
employed for microemulsions, whereas microemulsion dilution 
and chilling procedures are typical for microemulsions.84 Other 
methods are instrument-specific and include the membrane 
contactor method,85 spray-drying, spray-congealing86 and 
electrospray. Notably, the most popular preparation methods 
for SLNs formulations targeting antiparasitic drugs are 
often reported to be high shear homogenization, hot and 
cold homogenization, ultrasonication or homogenization, 
emulsification/evaporation, microemulsion, double emulsion 
method, and solvent evaporation/diffusion from emulsions.87-89

In addition to traditional preparation methods, recent 
innovative technologies have been explored for liposome 
preparation. These include the membrane contactor method, 
microfluidic channel method, dense gas methods, and freeze-
drying of monophase solutions.90 Green technologies are one 
of these innovative methods that have several advantages for 
biomedical research. Conventional synthetic nanomaterial 
development can be expensive and less ecologically friendly, 
which can create hazardous compounds.91 During the ten-
year period from 2003 to 2014, the implementation of green 
technologies led to a 7% decrease in the manufacturing 
of hazardous products, including methyl isobutyl ketone, 
trichloroethylene, and hydrochloric acid.92 As demonstrated by 
Mozafari et al. introduction of the bioactive carrier Tocosome, 

lipid nanoparticle synthesis has included green technology.93 

This molecule is the result of a manipulative and enhanced 
heating technique known as the “Mozafari method”.94 However, 
green technologies have been investigated for specific parasitic 
and harmful diseases, such as malaria,95-105 but their use in 
the formulation of lipid nanoparticles for parasitic diseases is 
limited, necessitating more precise developments.
Incorporation of natural and herbal polymers into Solid 
Lipid Nanoparticles 
Throughout human history, herbal therapy has also developed 
to treat a wide range of illnesses and ailments.106,107 Numerous 
applications have emerged as a result of the benefits of 
herbal remedies over time.7,108 In order to improve molecular 
size, boost bioavailability and biocompatibility, and reduce 
possible toxicity, herbal compounds are now incorporated 
into nanostructured systems.10,109-111 Nanotechnology is 
essential When it comes to lessening harmful effects and 
enhancing the targeted distribution of herbal products.112-114 
SLNs have attracted attention in the field of drug delivery in 
the past few years,115-118 with the goal of improving the oral 
bioavailability119 and efficacy of traditional herbal medicine. 
Furthermore, SLNs demonstrate stronger antioxidant 
application and function as stable carriers for plant extracts.120 
Artemisinin, extracted from Artemisia annua, is a well-known 
herbal remedy prescribed for malaria treatment. Recently, it 
has been shown that artemisinin-based combination treatments 
(ACTs) can reduce adverse effects and increase treatment 
efficacy for malaria. SLNs have been used in several studies 
as carriers for antimalarial medications, such as artemisinin.121 
In order to boost effectiveness, artemisinin and its derivatives 
(dihydroartemisinin, artemether, and artesunate) are combined 
with other commercial and unrefined medications.122,123 
Combination therapy, such as the enclose of artemether and 
lumefantrine in SLNs, is now recommended against unilateral 
for parasite malaria prevention and treatment.124 For instance, 
Attama et al.,38 utilized SLNs to significantly package 
the antimalarial drugs artemether and lumefantrine as the 
primary therapy for malaria management. The aforementioned 
approach sought to address biophysical problems, improve 

Figure 1: Classification of SLN models representing the drug distribution in 
the lipid core

Figure 2: Potential SLN applications for diverse routes of drug delivery

(Image reused under creative common license from Ref. 60)
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accessibility, and lessen adverse reactions. SLNs had been 
titled using the compound coumarin 6 to track cell-based 
consumption through Plasmodium-infected cell types in living 
cells investigations demonstrated excessive parasitic infections 
removal using lesser opposite effects, indicating SLNs to be 
an ensuring strategy for enhancing the productivity during 
conjunction rehabilitation for the malaria parasite. Dwivedi 
and others39 stuffed a different artemisinin by derivative, 
arteether (ART), through SLNs for oral medications. The 
effectiveness of ART-SLNs manufacturing was evaluated 
through trapping productivity via high-performance liquid 
chromatography and cellular damage consequences were 
assessed via MTT analysis upon the J774A.1 organism graph, 
revealing an organism’s sustainability across 90%. Omwoyo 
and colleagues.37 introduced DHA, a synthetic form of 
artemisinin receptor, into SLNs to determine its antimalarial 
effectiveness and get around issues such bad biophysical 
character and dissolution in water. The SLNs-crowded DHA, 
produced by fast speeds homogenization and single-emulsion 
solvent evaporation techniques, exhibited a dimension range 
of 150 to 500 nm. Consistency and continuous absorption of 
drugs were observed for more than 90 days and then 20 hours, 
respectively. In culture and in rodent assays revealed at IC50 
using 0.25 ng/mL via 97.24% chemo-suppression at 2 mg/kg/
day. These results underscore the excellent potential of SLNs 
formulation for clinical applications.

Recently, several reports have highlighted resistance 
against artemisinin.125-128 Luteolin, a biological constituent, 
has emerged as a potential solution to contradict artemisinin-
resistant P. falciparum.129 Luteolin disrupts the parasite’s life 
cycle by inhibiting lipid metabolism, impeding the growth 
of novel organelle components and the formation of juvenile 
trophozoites (ring stage).130,131 Due to the superior biological 
compatibility of luteolin, it has been utilized for incorporation 
into SLNs PEG by hot homogenization, freeze homogenization, 
and hot-micro emulsion ultrasonic methods.40 Consequently, 
luteolin isolated using Solid lipid nanocarriers via PEG 
alteration demonstrated enhanced absolute bioavailability, 
accompanied by reduced transport as well as elimination of 
the constituent

T. gondii, a different approach frequent microorganism that 
infect individuals, is the object of recent treatment studies. 
Nemati et al.30 produced Indian lilac (neem) extract-loaded 
SLNs by dual emulsification technique & assessed thier 
toxoplasma antagonist effect. This study outcome revealed that 
SLNs serve as lipid vesicles for neem oil, extend liberation, 
and exhibit tolerable Toxoplasma inhibition and minimal 
cellular toxicity.

Chitosan (CS), an organic biopolymer comprising units 
of NAG (N-Acetyl-D-glucosamine) and D-glucosamine, 
exhibits fascinating characteristics and is widely utilized 
in pharmaceutical fields, particularly in drug delivery 
applications.132,133 Recently, interest in innovative formulations 
that combat microorganisms by using biological sources 
and non-toxic materials has increased134 CS has shown 
promise as a coating material for the delivery of different 

types of nanoparticles, including SLNs.135,136 CS-covered 
SLNs have been effectively prepared for treating multiple 
conditions.22,137,138

The anti-parasitic potential of CS to counter parasites 
such as Leishmania, Trichomonas, Plasmodium, and 
Toxoplasma have been preclinically investigated.139 Teimouri 
et al., demonstrated the high effectiveness of CS against T. 
gondii, proposing its use as a substitute botanical therapy in 
toxoplasmosis management.140 Laboratory and animal studies 
revealed total mortalness the RH variant microorganisms and 
the rates at which their development is inhibited in abdominal 
animals. CS also displayed considerable influences on P. 
berghei,141 displaying potential antimalarial activity at different 
concentrations. To counteract chloroquine (CQ) expulsion 
from the acidic environment within the parasite phagosome, 
chloroquine microparticles, employing CS encapsulation, 
weakened P. berghei disease in male Swiss rodents. The 
nanoparticle formulation demonstrated greater strength in 
protecting against deoxyribonucleic acid damage, oxidizing 
strain, and inflammatory response in infected mice.141

Chitosan’s antiparasitic efficiency was investigated against 
T. gallinae trophozoites, exhibiting a high mortality rate 
and inhibiting trophozoite viability compared to the control 
group.142,143 Yet, limited analysis has explored the composite 
of chitosan using SLNs in ectoparasitic diseases. Furthermore, 
chitosan has demonstrated antiparasitic effectiveness in an 
artificial environment using a 50% effective concentration 
(EC50) counteracting promastigote-stage parasites and 
amastigote-stage parasites of various Leishmania species.144-147 
Recent findings also suggest therapeutic and vaccine purposes 
for chitosan and its derivatives in treating and preventing 
similarly integumentary and internal Leishmania species. 
Trade CS is proposed as a suitable aspirant for additional 
research concerning integumentary and internal Leishmania 
species therapy.

In a research conducted by Jain and colleagues 36 they 
studied the use of chitosan-coated SLNs as an immuno adjuvant 
therapy for Leishmania infection. By combining SLNs with CS, 
a natural resin, and loading them with amphotericin B (AmB), 
they were able to activate macrophages, eliciting immunological 
reactions like tumor necrosis factor-alpha and interleukin 12 
counter Leishmania species. The SLNs preparation with the 
solvent emulsification-evaporation technique and cellular 
toxicity research conducted in mice demonstrated a favourable 
safety profile. These findings suggest that AmB-loaded SLNs, 
serving as a secure and efficient platform, hold promise for the 
treatment of Leishmania infections through both therapeutic 
and immunotherapeutic approaches.
Medicinal effectiveness of Antiprotozoal Agents 
Encapsulated into SLNs
Plant-based Drugs has evolved as healing method beneficial 
to infection throughout living history.106,107 Gradually, plant-
based Drugs’ advantages have led to various applications’ 
development.7,108 Plant-based compounds are integrated into 
nanosized systems to enhance molecular mass, higher biological 
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Table 2: Approaches to SLN fabrication and Their Pros and Cons

Approaches Benefits Drawbacks

Accelerated shear 
homogenization 

Generation about micro dispersions 
using solid lipid.
Widespread distribution and ease of 
handling

Breakdown of powder, particularly for delicate or heat-sensitive powders
Excessive wetting leads to sizable lumps forming, resulting in less granular 
compressibility.

Thermal 
homogenization

SLN-suspended particles formed 
avoiding the need of solvents.

Deposition of medications through nanotechnology.
Lack of polar drug encapsulation
Not appropriate for pharmaceutical compound that react to heat
Minimal concentration of drugs in the SLN

Refrigerated 
homogenization

Tackling an array of issues related to 
thermal homogenization
greater dimensions of particles as well 
as a wider range of dimensions

An operation consuming an excessive amount of effort
Dispersions of polydisperse
Lack of sustainability 

ultrasonic vibration 
Homogenization

Usual across all laboratory Increasingly distributed tiny particles that cross the micron level

Emulsification/
Evaporation

Remain cautious of warmer 
temperatures

Toxicity problems due to solvent residues

Micro emulsion 
formats: 
(1) strategy for 
dispersing micro 
emulsion; 
(2) strategy for freezing 
micro emulsion

Spontaneous
Low-energy required
Efficient
Scalable
Biocompatibility
Economical

Opaque in nature

Super critical solution Excellent absorption efficacy of 
compounds with supercritical CO2

Solution having a large compression 
factor which includes liquid and gas 
characteristics

Restricted

The dual emulsion 
technique

Straightforward
Suitable for managing parameters 
used in processing
Protecting pharmaceutical compounds 
that are polar and highly lipophilic

Particles of enormous size can be produced with this method of production.

Spray evaporation The capacity to adjust and manage a 
range of characteristics
The preferred technique for drying a 
variety of materials that are heat-
sensitive

Irregular
Non-spherical

Solvent based methods Acquire compounds that have issues 
with equilibrium and bioavailability.
Lukewarm activity

Precipitation technique Affordable
Capability to regulate SLN size
Preparation of microspheres and 
microcapsules

Particle size is influenced by lipid concentration

Evapo-diffusion Scalable
Use less energy

Outdated
Explore more about solvents made from organic materials
Enquire regarding excessive amounts of lubricants.
Complicated

Phase transition 
temperature technique

Significant
Greater tolerance
Specificity
Polydispersity

Very limited applications for thermosensitive molecules.
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availability, bioinertness& lower potential toxigenicity.10,109-111 
Nanotechnology performs a decisive taskin reducing adverse 
effects and improving the targeted transportation of plant-
based items.112-114 Recently, SLNs have garnered focus in 
the field of medication distribution,115 aiming to improve the 
effectiveness116-118 and boost the efficiency of oral drug uptake 
119 of indigenous plant based drug. Additionally, SLNs serve 
as reliable carriers for phytoextracts, exhibiting improved 
anti-oxidant capacity.120

Artesunate (a derivative of artemisinin), extracted from 
Artemisia annua, is a well-known herbal remedy prescribed 
for malaria treatment. Artemisinin-based combination 
protocols have recently been generated to enhance efficiency 
and minimize side effects in malaria treatment. Numerous 
studies have utilized SLNs formulations as vehicles for 
antimalarial medicines, including artemisinin.121 Artesunate 
and other artemisinin derivatives are incorporated using 
other economic medicines for improved efficacy.122,123 
Combination therapy, such as the encapsulation of artemether 
and lumefantrine in SLNs, is now desired a cross-single-drug 
therapy for plasmodium infection.124 To illustrate, Attama 
and contributors.38 Artemether and lumefantrine, which are 
used to treat malaria, were encapsulated using SLNs. The 
mentioned approach aimed to reduce adverse effects, increase 
absorption rate, and address pharmacokinetic disparities. 
SLNs were tagged with coumarin 6 to monitor cellular 
absorption within Plasmodium-infected cells. Animal trials 
demonstrated a significant reduction in parasitemia alongside 
decreased adverse effects, suggesting that SLNs hold promise 
as a technique to improve the efficacy of malaria combination 
therapy. Dwivedi and other colleagues.39 Developed SLNs were 
used to administer another artemisinin derivative, arteether 
(ART). The effectiveness of the ART-SLNs preparations was 
assessed by determining its encapsulation efficiency with 
high-performance liquid chromatography. Cytotoxic changes 
were assessed using MTT analysis on the J774A.1 cellular 
lineage reveals a biological cell potential above the 90% 
mark. DHA, a subclass of artemisinin, was encapsulated into 
nanocarriers in a study by Omwoyo and colleagues37 in order 
to evaluate its antimalarial activity and get over obstacles, 

including poor water solubility and adverse pharmacokinetic 
properties. The single-emulsion solvent evaporation and fast 
speeds homogenization techniques used to create the SLNs 
impregnated with DHA showed a dimension array ranging 
from 150 to 500 nm. The formulations exhibited endurance 
and continual drug release for up to 90 days and across 20 
hours. In an animal model and under experimental conditions 
experiments showed an IC50 of 97.24% chemo-suppression 
at 2 mg/kg/day with 0.25 ng/ml. These results underscore 
the excellent potential of SLNs formulation for clinical 
applications.

Recently, several reports have highlighted resistance 
against artemisinin.125-128 Luteolin, a biologically active 
substance, has emerged as a potential solution to eliminate 
artemisinin-resistant P. falciparum.129 Luteolin disrupts the 
parasite’s life cycle by inhibiting lipid synthesis, impeding 
the generation of novel cell components and the growth of 
juvenile trophozoite (ring stage).130, 131 Due to the admirable 
physiological compatibility of luteolin, it has been injected 
into SLNs- polyethylene glycol with thermal or freeze 
homogenization and hot-microemulsion ultrasonic methods.40 
Consequently, the Antioxidant compound encased by SLNs 
using polyethylene glycol adjustment demonstrated the 
enhanced proportional bioavailability, reduced spreading, and 
endorsement regarding the segment.

T. gondii et al., further endemic protozoan parasites, is a 
target for the creation of novel treatments. Nemati and other.30 
grown nimbafat-coated SLN with the dual emulsification 
technique & assessed their toxoplasma eradication. The study 
findings revealed that SLNs, assuming the role of lipid vesicle 
transporter for neem oil, extended extract delivery, exhibited 
decent Toxoplasma inhibition and minimal cytotoxic effects.

Chitosan (CS), a native biological polymer made up of NAG 
and glucosamine units, possesses intriguing aspects and finds 
wide-ranging drug applications, notably in drug delivery.132,133 
Recently, Novel formulations that combat germs by using 
organic sources and non-toxic chemicals have drawn more and 
more attention.134 CS is establishing itself to be a viable method 
of delivering and coating several types of nanoparticles, such 
as solid lipid nanoparticles.135,136 Chitosan-loaded SLNs 

Membrane contactor 
technique

Easy
Rapid
3. Scalable

to cross-link rarely A modest number of particles are produced.
Utilizes a substance

Electrospray Easy
Affordable
Safe
Effortless

    
      -

Green technologies Easy
Affordable

Fine-tuning
Regulation of crystal structure and morphology

Solvent infusion 
techqniue

Effective
Adaptable
Straightforward
Produces both hydrophobic and 
hydrophilic 
Progressive

Organic solvents and is not easily scaled up
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have been effectively developed to manage various health 
conditions.22,137,138

Inverse effects of chitosan opposed to parasites such as 
Leishmania, Trichomonas, Plasmodium, and Toxoplasma 
have been noted.139 Teimouri et al.,140 demonstrated the high 
effectiveness of CS against T. gondii, proposing its use as 
substitute native drug in toxoplasmosis therapy. In a mouse 
peritoneal cavity, the rate of expansion decreased by RH strain 
microorganisms, which was shown to be completely mortal 
in an animal model under experimental settings. P. berghei 
was significantly affected by CS as well, showing possible 
antimalarial action at various doses. Using CS encapsulation to 
prevent chloroquine (CQ) from being effluxed from the parasite’s 
acidic digestive vacuole, male Swiss mice with P. berghei 
infection were less susceptible to nanoparticle chloroquine 
(NCQ) infection. The nanoformulation demonstrated greater 
potency in protecting against DNA damage, oxidative stress, 
and inflammation in infected mice.41

Chitosan’s antiprotozoal action was underlined against 
trophozoites of the parasite Trichomonas gallinae, exhibiting 
a high mortality rate and inhibiting trophozoite viability 
compared to the control group.142,143 Yet, limited investigation 
has investigated chitosan’s union using SLNs in parasitical 
contagions. Furthermore, CS has demonstrated laboratory-
based antiLeishmania action with a 50% effective concentration 
(EC50) as opposed to motile and non-motile models of 
various Leishmania species.144-147 Recent findings also 
suggest therapeutic and vaccine purposes for chitosan and 
its derivatives in treating and preventing skin-related and gut 
Leishmania together. Market-oriented CS is proposed as a 
suitable prospect for extended analysis on skin-related and gut 
Leishmania medication.

In an investigation,36 chitosan-loaded SLNs were 
applied as an immune modulator cytotoxic treatment for 
Leishmanial disease. The mixture of SLNs using chitosan 
as a novel synthetic resin, coated with an antifungal drug, 
caused macrophage enabling, triggering host defenses like 
Cytokine TNF and cytokine IL12 instead of Leishmania. 
The formulation of SLNs was carried out with the solvent 
emulsification-evaporation method, and cell-toxic investigation 
in mice uncovered proper well-being data. The results indicate 
the entity AmB-SLNs, as a secure and efficient medicament 
dosage system, could be valuable in antiLeishmanial treatment 
and Immunologic therapy.̀
Medicinal Effectiveness of AntiLeishmanial Drugs 
Encapsulated in SLNs
In order to enhance the therapeutic qualities and effectiveness 
of commercial ant iparasit ic medicat ions, such as 
praziquantel,98,101 paromomycin,29,32,34,35 nitazoxanide,148 
tanespimycin (17-AAG),31 and AmB,32,36,149 investigations 
have utilized SLNs to serve as a vehicle.
Protozoans
Accessible information points to adverse effects, virulence, and 
resistance to trade medicines in various parasitical protozoan 
transmission.150,151 To address the drawbacks of existing 

substances for parasitical protozoa transmission, Lipophilic 
preparations have been proposed to improve therapeutic 
agent absorption rate and efficiency.152,153 Parvez and others32 
Planned a therapeutic agent-transmission structure to reduce 
therapeutic agent harmfulness and enhance absorption of 
Amphotericin B and Post-meridiem as opposed to core 
Leishmaniasis through orally controlled double drug solid 
lipid nanoparticles. These solid lipid nanoparticles, altered 
using 2-hydroxypropyl beta-cyclodextrin, demonstrated 
decreased toxicity and adverse effects and improved efficiency 
balanced with lipid-based models. The 2-hydroxypropyl beta-
cyclodextrin alteration enhances SLNs’ engage by afflicted 
phagocytes, inhibiting intracell non-motile stage progress.32 
Additionally, B12-stearic acid complex-coated Amphotericin 
B-loaded SLNs were developed to improve oral transportation 
absorption and AmB utilization,33 achieving an efficiency of up 
to 94% using lower toxic. Adjustment of molecular chaperone 
90 kDa was suggested to suppress the progress of Leishmania 
spp.154 Pires et al.31 loaded SLNs with tanespimycin (17-AAG), 
an Hsp90 inhibitor, demonstrating potential as delivery 
systems for eliminating intracellular Leishmania. Kharaji et 
al.34 developed PM sulfate-loaded SLNs that were opposed 
to L. major and L. tropica, showing enhanced effectiveness 
using lower toxicity. Heidari‐Kharaji and others.35 reported the 
safety and efficacy of post-meridiem opposed SLN preparations 
counter to L. major in infected BALB/c mice, suggesting its use 
in treating cutaneous Leishmaniasis. Additionally, Khosravi 
et al.29 created post-Meridiem mannosylated SLNs at larger 
dosages than PM and showed strong anti-intracellular T. gondii 
activity and minimal cell damage.
Helminths

Categorization of anthelmintic drugs according to their 
mode of action.
Helminths is a eukaryotic organisms with intricate structures 
with the muscular system, nervous system, digestive system, 
and reproductive system), can affect various human tissues, 
including the liver, blood, and intestine.156 Clinically, 
helminths are categorized into the following classes: cestodes 
(tapeworms), nematodes (roundworms), and trematodes 
(flatworms), distributed worldwide.157

Anthelminthic drugs disrupt the cell morphology, rigidity, 
metabolism, and Neuromuscular tones of helminths, leading 
to damage and expulsion from the host’s intestine.158,159 
anthelmintics are categorized into anticestodal, antinematodal, 
and antitrematodal medicines according to their mode of action. 
Helminthicide medicines could react using gluconeogenesis 
and respiratory enzyme modulation, which may lead to 
neuromuscular action being blocked. The following action 
can lead to the render in the susceptible to the immune cells 
of the host.160-163

Metabolism disruption
Benzimidazoles (BZD) which are albendazole (ABZ), 
mebendazole, thiabendazole, and triclabendazole are a group of 
agents with improved therapeutic efficacy used against various 
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parasitic worms such as A. lumbricoides, T. trichiura, E. 
vermicular, Necator americanus, and Ancylostoma duodenale. 
They primarily inhibit tubulin polymerization, interfering 
with gluconeogenesis and microtubule polymer formation. 
This damages cytoplasmic tubulin filaments, impairs glucose 
assimilation in juvenile and mature parasite phases and 
significantly consumes parasite glycogen by mebendazole.164 
Niclosamide treats tapeworms by inhibiting oxidative 
phosphorylation and transportation of electrons, impairing 
Adenosine triphosphate production.165 The nerve system and 
the glycolytic pathway of F. hepatica, may be affected by 
Clorsulan, which inhibit phosphoglycerate kinase.166,167 The 
well-known antibacterial and anthelmintic agent, Bithionol, 
may interfere with the production and formation of ATP 
oxidative phosphorylation, resulting in the inhibition ATP 
formation in parasites.164

Nervous and muscular system disruption
Imidazothiazoles, nicotinic anthelmintics, act as acetylcholine 
receptor agonists, may leads to the f laccid paralysis of 
worms causing by inhibiting neuromuscular depolarization. 
Piperazine mimics GABA receptor-blocking Cl channels 
(a family of chlorine channels), inhibiting motor neuron 
activation in soil-transmitted helminths (STH). Tetramisole, 
Pyrantel-pamoate, and Morantel-tartrate target nicotinic 
AChRs, resulting in spastic paralysis. Pyrantel pamoate, 
broad-spectrum anthelmintic, having the therapeutic action of 
degenerating neurological and muscular blockers, paralyzing 
parasitic organisms by releasing Acetylcholine and inhibiting 
cholinesterase.159

Cell Membrane Integrity and Destruction
 mostly, anthelmintic drugs act by inhibiting cell- wall outer 
layer usually, the protective layer and paralyzes helminths by 
causing intracellular Ca2+ leakage. In cestodes, anthelmintic 
medication causes paralyzing muscle effects and tegumental 
dysfunction. Following PZQ treatment, teguments disruption 
occurs due to a significant influx of Ca2+, resulting in death 
and expulsion.172-174 When used to treat loiasis, filariasis, 
and tropical eosinophilia, diethylcarbamazine immobilizes 
bacteria and modifies their surface structure, which causes 
them to move from tissues and improve their interaction with 
the immune system.
Therapeutic effectiveness of anthelmintic drugs encapsulated 
in SLNs
Various groups of anthelminthic drugs are developed, 
each tailored to address specific classes of helminths. 
For example, the recommended treatment for tapeworm 
infections and schistosomiasis is praziquantel, whereas 
the main medications for soil-transmitted helminths are 
mebendazole and albendazole. Furthermore, ivermectin and 
diethylcarbamazine are used to treat filarial infections.175

Gastrointestinal absorption sites for anthelmintic drugs and 
role of SLNs
Anthelmintic drugs exhibit distinct absorption sites in the 
gastrointestinal tract.176 Mebendazole accumulates in the 

intestine, targeting the enormous gastrointestinal worms like 
whipworms, hookworms, and ascarids.177 In contrast, pyrantel 
pamoate, chosen for ascariasis, hookworm, pinworm, along 
with trichostrongyliasis infections, is within the lumen of the 
intestine.159 Currently, available anthelmintic medications have 
issues with quick disintegration, low absorption, and insoluble 
in water.178 Specific administration using a combination of 
traditional treatment and nano carriers has been utilized to 
tackle these problems and fight anthelmintic resistance.179-180 
High surface-to-volume ratio nanoparticles enhance dissolution 
rates and surface area, overcoming solubility and bioavailability 
limitations. Small and large intestine helminths utilize lipids 
from digestive fluid for metabolic activities, making SLNs 
exhibit marvelous lipid carriers for anthelmintic drugs like 
albendazole (ABZ), praziquantel (PZQ), and albendazole 
sulfoxide (ABZS).181-185

Enhancing Anthelmintic Efficacy through SLNs Formulation
Ivermectin and nitazoxanide (NTZ) serve as potent anthelmintic 
drugs, extensively utilized for trichinosis treatment.148 
Anticipating future drug resistance, the need for novel, 
stable, and biocompatible therapeutic agents has emerged. 
Hassan and other researchers prepared SLNs brimming using 
nitazoxanide utilizing a modified thin-film hydration method, 
demonstrating increased effectiveness toward the muscular 
and intestinal stages of trichinosis in murine hosts.148 This 
approach, commonly employed for liposome preparation, holds 
promise for enhancing drug delivery.

Albendazole (ABZ), a widely used and prescribed 
benzimidazole for various Worm infections, has demonstrated 
efficacy against various helminths.103 Sharma along with 
additional researchers produced SLNs laced with ABZ to 
combat the GI parasitic organism worm the human parasite 
(Ha) contortus. Utilizing a double emulsion technique, this 
formulation aimed to enhance ABZ effectiveness, reducing 
required dosage and minimizing side effects.103

Hydatidosis, caused by Echinococcus tapeworm larvae, 
is typically treated with benzimidazole derivatives. ABZ, 
being lipophilic, is effective against cystic echinococcosis 
(CE). However, systemic side effects pose challenges. A study 
focused on the SLN loaded with ABZ and ABZ sulfoxide  
formulations to improve agents permeation across hydatid 
cloned membranes, demonstrating enhanced release, improved 
conductivity and efficacy in contrast with standard drugs.100 
Ultrastructural changes were investigated, showing increased 
effectiveness of SLNs-loaded Albendazole and Albendazole 
sulfoxide in tiny, fertile cysts.99

Toxocara canis and T. catis are the causes of the disease 
toxocariasis, is treated with ABZ. Kudtarkar et al. employed by 
the lipid nanoparticles to prepare ABZ-loaded SLNs, exhibiting 
effective drug delivery and therapeutic outcomes in animals 
harboring T. canis worm infection. 105

Abedi along with additional researchers created 
Electromagnetic SLNs loaded albendazole, incorporating 
(Fe3O4) NPs as carriers to enhance efficient drug delivery.182 



Therapeutic Prospects of Solid Lipid Nanoparticles for Parasitic Infections

IJDDT, Volume 14 Issue 1, January - March 2024 Page 455

These advancements in SLN formulations showcase their 
potential to improve anthelmintic drug efficacy.
Optimizing Praziquantel (PZQ) Efficacy Through 
Nanoformulation
Despite reported disadvantages such as poor water solubility 
with low digestive system penetration, along with the 
requirement over substantial dosages,186 PZQ remains a first 
line medication to worm pathogens with the recommended 
option for schistosomiasis chemotherapy.187-189 However, 
its effectiveness is compromised in high-endemic areas, 
particularly during oral administration. Nanoformulations of 
PZQ have been explored to address these challenges.

The intestinal penetration, toxic effects, and effectiveness 
of PZQ-loaded SLNs towards adult S. mansoni were evaluated 
by Souza et al.98 With reduced cellular toxicity than free PZQ, 
the spherical PZQ-SLNs, measuring 500 and 1000 nm, showed 
improved efficacy against S. mansoni by the use of high-shear 
homogenization and micro-emulsification techniques. This 
points to PZQ-loaded SLNs as a possible method of controlling 
schistosomiasis.

Similar to this, PZQ-SLNs were developed by Radwan et 
al. 97 to improve absorption and antischistosomal effectiveness 
towards S. mansoni infection in mice. The SLN formulations 
were made by homogenizing at high shear and micro-
emulsifying, exhibited sizes ranging between 87.32 and 
302.3 nm. Treatment with SLNs-PZQ significantly reduced 
the number of worms and total mature eggs in S. mansoni-
infected mice, indicating improved therapeutic outcomes. 
Pharmacokinetic assessments further demonstrated increased 
PZQ absorption among individuals infected with S. mansoni.

Xie and colleagues 102 employed a novel strategy to increase 
treatment efficacy against dogs infected with E. granulosus: 
they loaded PZQ inside hydrolyzed castor oil-SLNs. Utilizing 
heat homogenization and ultrasonication procedures, the study 
found that PZQ with SLNs exhibited improved therapeutic 
activity, even at a lower dose of 0.5 mg/kg compared to the 
clinical application dose of 5 mg/kg. The average nanoparticle 
size was 263.00 ±11.15 nm.

Andrade101 for the purpose of treating S. mansoni 
infections, SLNs loaded with PZQ were created using the high-
cut homogenization approach. A study using SEM microscopy 
revealed spherical PZQ-loaded SLNs that ranged in size from 
500 to 1000 nm. PZQ-loaded SLNs exhibited outstanding 
parasiticidal activities against mature S. mansoni worms 
in-vitro, highlighting their potential to optimize treatment 
outcomes.
Future perspectives in nanodrug formulation for parasitic 
diseases
As we witness the emergence of novel drugs, the nano 
technology and nano science are the more emering fields 
spanning a wide spectrum of communicable and non-
communicable diseases. Nanoparticles, or materials at the 
nanoscale, have gained popularity due to their best-suited 
approaches and ease in drug delivery, leading to a significant 

rise in interventional studies exploring nanoparticle-based 
medications. Site-particular medication administration holds 
the promise of reducing systemic toxicity, overcoming certain 
distribution, and addressing disadvantages associated with 
conventional drugs.

Moreover, the progression in nanomaterial-based drug 
delivery systems for parasitic infections remains a priority 
for ongoing research. Clinical trials utilizing SLN based 
formulations for the cure of parasitic diseases are limited, 
highlighting the need for an expanded arsenal of nanodrugs 
tailored to combat these infections. Furthermore, in tandem 
with advancements in herbal medicine, SLN formulations 
present an alternative avenue to enhance particular distribution 
and mitigate the detrimental impacts of phyto lysates and their 
ingredients.

The utilization of SLN formulations in immunizations 
stands out as a potential focus for future research. Incorporating 
SLNs with adjuvants has the potential to boost immune system 
reactions during immunization, This may prolong exposure 
to the immune system, enhancing overall immunogenicity, 
especially given the instant disruption of adjuvants in the body.

Despite the rapid progress of novel drug approach and its 
applications in nanodrug formulation, a growing disparity 
exists between developed and developing countries. Limited 
facilities and technology in poor countries impede their 
effective participation in building up nanotechnology-based 
drugs to meet their specific needs. To bridge this gap, several 
suggestions are proposed: fabricating budget- friendly novel 
medications with minimal cost of higher consistency and 
efficacy of administration; involving non-governmental 
organizations in investing and providing resources for 
designing and fabricating effective nanodrugs; utilizing 
cost-friendly components like Plant- based extraction and 
technological advances to reduce the overall expense for 
developing new medications to combat infections caused 
by helminths and developing a central corporation for help 
research  and development forfuther approaches innovations, 
thereby increasing the accessibility of nanodrugs in less-
developed regions to address their unique challenges.

CONCLUSION
In conclusion, the application of SLNs as nano vehicles for 
antiparasitic drugs presents a promising avenue in the field 
of pharmaceutical drug delivery systems. The spectrum 
related to illnesses caused by parasites, ranging from mild 
to severe, necessitates innovative and effective drug delivery 
systems. SLNs, characterized by their optimal discharge 
ratio, and reliable passage, emerge as viable surrogates 
among nanocarriers. The review delves into the evolution 
of SLN development, emphasizing preparation methods, 
characterization techniques, and the incorporation of drugs to 
combat parasitic diseases. The advantages of SLNs, including 
their higher area of the surface, enhanced reliability, and higher 
drug delivery attributes, contribute to improved therapeutic 
efficacy. Their potential to deliver natural antiparasitic products 
is particularly noteworthy, offering a sustainable approach for 
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the management of parasitic infections. Recent advancements 
in utilizing nanoparticles to enhance SLN stability and loading 
capacity underscore the dynamic nature of this field. The 
comprehensive overview of SLN structures, applications, 
and characterization methods provides valuable insights into 
the evolving landscape of antiparasitic SLN-loaded drugs. As 
nanotechnology performs a fundamental task in biomedicine, 
integrating SLNs as carriers in favor of antiparasitic drugs 
opens up new possibilities for efficient and targeted treatment. 
The successful development of SLN-loaded drugs could 
potentially address the challenges posed by conventional 
chemical drugs, offering a safer and more effective alternative 
in the fight against parasitic infections. This review contributes 
to the ongoing dialogue on nanotechnology’s role in advancing 
drug delivery systems for parasitic diseases and underscores 
the importance of continued research in this area.
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