INTRODUCTION

The thyroid gland is the body’s largest endocrine organ, specialized to perform various functions. Its role is to secrete thyroid hormones, such as tetraiodothyronine (T4) and less triiodothyronine (T3). The rates of cellular respiration and metabolism in almost every kind of mammalian cell are largely regulated by thyroid hormones (THs). The rise in the rates of both catabolic and anabolic processes is part of the broader metabolic effects of THs, which include a relative acceleration of basal metabolism. The impact of thyroid hormones on cellular respiratory rate can be explained by its capability to alter the amount and working of mitochondrial respiratory chain constituents in many ways, which may lead to a rise in the production of reactive oxygen species (ROS) and other toxic metabolites. “Oxidative stress” describes a condition of damage caused by ROS. An imbalance between the body’s synthesis of prooxidant chemicals and its antioxidant defense system is referred to as oxidative stress. ROS production could play important functions in many cells like leukocytes and endothelial and mesangial cells. Dual oxidases (DUOX) are enzymes essential for the production of hydrogen peroxide and they are crucial for thyroid peroxidase (TPO), which catalyzes thyroid hormone production. DUOX1 and DUOX2 are from the oxidases family which are involved in thyroid hormone synthesis. They are the maturation factors that enable dual oxidase enzymes to translocate to the follicular

ABSTRACT

Background: The frequency of thyroid disorders is rising quickly, making them a major socioeconomic issue. Oxidative stress is also connected to thyroid disorders with increasing frequency. Moreover, an association between underlying inflammatory processes and oxidative damage must be considered because most thyroid ailments are seen to have an underlying inflammatory basis.

Aim & objectives: This systematic review assesses the oxidative stress in thyroid dysfunctions and their association with inflammatory processes.

Methodology: A systematic review of the literature was done using databases that included PubMed, Scopus, Science Direct, Research Gate and Google Scholar using the keywords “oxidative stress”, “inflammatory markers,” and “thyroid disorders” from 2000-2022. After separately evaluating citations and abstracts, two reviewers examined full-text publications and came to an agreement on the research that should be included. We conducted this research using the preferred reporting items for systematic research and meta-analysis (PRISMA).

Results: A total of 531 articles were found, out of which only 51 met the criteria of inclusion. A significant heterogeneity across the studies was found. In these studies, various oxidant/antioxidant and inflammatory markers were used to determine oxidative stress and its association with inflammatory processes. Most studies found a high level of reactive oxygen species (ROS) induced by an imbalance of thyroid hormones that can cause oxidative stress with a consequent lipid peroxidation response and accelerated inflammatory response.

Conclusion: Data from the literature demonstrated a significant correlation between oxidative damage results and elevated ROS production. Thyroid issues can potentially trigger or exacerbate oxidative stress and ROS generation, which can worsen oxidative damage. Additionally, recent research indicates that OS and inflammation may be related in some way since mitochondrial reactive species are signalling molecules that cause the release of proinflammatory cytokines.

Keywords: Thyroid dysfunction, Oxidative stress, Inflammatory markers, Antioxidants.

International Journal of Drug Delivery Technology (2024); DOI: 10.25258/ijddt.14.1.71

Source of support: Nil.

Conflict of interest: None.

INTRODUCTION

The thyroid gland is the body’s largest endocrine organ, specialized to perform various functions. Its role is to secrete thyroid hormones, such as tetraiodothyronine (T4) and less triiodothyronine (T3). The rates of cellular respiration and metabolism in almost every kind of mammalian cell are largely regulated by thyroid hormones (THs). The rise in the rates of both catabolic and anabolic processes is part of the broader metabolic effects of THs, which include a relative acceleration of basal metabolism. The impact of thyroid hormones on cellular respiratory rate can be explained by its capability to alter the amount and working of mitochondrial respiratory chain constituents in many ways, which may lead to a rise in the production of reactive oxygen species (ROS) and other toxic metabolites. “Oxidative stress” describes a condition of damage caused by ROS. An imbalance between the body’s synthesis of prooxidant chemicals and its antioxidant defense system is referred to as oxidative stress. ROS production could play important functions in many cells like leukocytes and endothelial and mesangial cells. Dual oxidases (DUOX) are enzymes essential for the production of hydrogen peroxide and they are crucial for thyroid peroxidase (TPO), which catalyzes thyroid hormone production. DUOX1 and DUOX2 are from the oxidases family which are involved in thyroid hormone synthesis. They are the maturation factors that enable dual oxidase enzymes to translocate to the follicular
cell membrane, which boosts their enzymatic impact. Typically, they function in tandem with DUOXA1 and DUOXA2. The human thyroid gland’s intracellular ROS-generating mechanism is the recently identified enzyme NADPH oxidase 4 (NOX4).6

Thyroid epithelial cells naturally create modest levels of ROS, which are crucial for the formation of thyroid hormone.7 They are not always harmful because of constantly detoxified during hormone production or by endogenous antioxidant mechanisms. In overwhelming quantities, they may be toxic and have been seen to be connected to inflammation and degradation of cells.8 Because thyroid hormones are involved in cellular metabolism and oxygen consumption, they are believed to significantly affect oxidative stress. The endocrine negative feedback system in the body regulates them to stay within normal ranges. However, variations in their concentrations may modify the redox environment by influencing the quantity and activity of components in the mitochondrial respiratory chain, leading to a rise in ROS production, which is frequently shown to be suppressed by antioxidants. When ROS are produced excessively, thyroid hormones enhance oxygen consumption. This throws off the prooxidant/antioxidant balance, causing oxidative stress and subsequent damage to DNA, lipids, proteins, and cellular structures.9

Different defense mechanisms against free radical generation have been classified in different cellular locations, including the cytosol, the ER, mitochondria, and the cell membrane. Some enzymes and transition metal binding proteins of are thought to inhibit or at least prevent the generation of free radicals.10 Additionally, thyroid hormones usually target mitochondria. There is a continuous flow of oxygenated water during thyroid hormone synthesis, which is required for iodine intrafollicular oxidation in the presence of thyroid peroxidase (TPO).11 The potential link between reactive oxygen species and dysfunctional thyroid gland function has been under attention in recent years, but concrete evidence is still needed. Moreover, an association between underlying inflammatory processes and oxidative damage also needs to be considered because most of the thyroid ailments are seen to have an underlying inflammatory basis.

MATERIAL AND METHODS

Search Strategy
To study the oxidative damage and inflammatory status in patients with thyroid disease, a systematic review search was done in the databases of PubMed, Scopus, Research Gate, Science Direct and Google Scholar for the period 2000 to 2022. The search words used in the database are “oxidative stress” “thyroid disorders” or “inflammatory markers” using Boolean operators. Additional articles were identified through a review of cross-references to expand the search. The preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines were followed in conducting the systematic review.

Inclusion Criteria
• All articles must include any one of the thyroid diseases.

• Articles dealing with thyroid dysfunction with oxidative stress
• Papers analyzing thyroid dysfunction and its association with inflammatory markers
• Articles retrieved only from reliable web search engines

Exclusion Criteria
• Studies not within the field of interest of this review
• Literature not available in the English language
• Criticism was also avoided

Study Selection and Analytical Process
Studies investigating oxidative stress, inflammation and their association with thyroid dysfunction were eligible for inclusion in this review. Two different reviewers reviewed all the articles included at different times. If any conflict occurred between the two, a third reviewer was also involved to comment on the included literature. Articles were rejected if they were ineligible. Hence, all the types of biases were completely eliminated. The standards defined by the PRISMA were used to investigate the collected publications.

Literature Search
A summary of the literature search process is shown in Figure 1. The comprehensive net literature search from PubMed/MEDLINE, Science Direct, Scopus and Google Scholar databases revealed 531 records. Among these records, 480 were excluded and 51 were selected and retrieved in full-text versions. Further, cross references obtained while screening the main references of the selected articles were also found and those found relevant and appropriate to the topic were included in the present systematic literature review.

RESULTS
The main characteristics of the studies included are summarized chronologically as shown in Tables 1 and 2. A total of 531 articles were found, out of which only 51 met the criteria of inclusion. A significant heterogeneity across the studies...
Table 1: depicting studies related to the oxidant and antioxidant status in thyroid dysfunction patients from 2000-2022.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Authors</th>
<th>Publication year</th>
<th>Sources of article</th>
<th>Parameters</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eddib I, et al.</td>
<td>2022</td>
<td>Science Direct</td>
<td>Free thyroxin 4 (FT4) thyroid stimulating hormone (TSH), malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione (GSH).</td>
<td>Lipid peroxidation is elevated in hypo- and hyperthyroidism. Thyroid patients' decreased glutathione levels and increased GPx activity.</td>
</tr>
<tr>
<td>2</td>
<td>Roshni R, et al.</td>
<td>2021</td>
<td>Scopus</td>
<td>oxidative stress index (OSI), Paraoxonase-1 (PON-1), and thyroid profile</td>
<td>OSI and TOS increase whereas no change in the antioxidant status as well as PON-1 activity in SCH patients.</td>
</tr>
<tr>
<td>3</td>
<td>Kochman J, et al.</td>
<td>2021</td>
<td>PubMed</td>
<td>Review article to investigate oxidative damage in thyroid dysfunction and diseases</td>
<td>This study suggested the potential link between oxidative stress and thyroid diseases.</td>
</tr>
<tr>
<td>4</td>
<td>Sultana R, et al.</td>
<td>2021</td>
<td>PubMed</td>
<td>MDA, TAC</td>
<td>The mean MDA level was lower but TAC was significantly increased in hyperthyroid patients.</td>
</tr>
<tr>
<td>5</td>
<td>Szczepanik J, et al.</td>
<td>2021</td>
<td>PubMed</td>
<td>Zn, Cu, FRAP, TBARS, total phenolics</td>
<td>No difference in Cu, Zn and FRAP levels while higher levels of TBARS concentration in Hashimoto's thyroiditis women.</td>
</tr>
<tr>
<td>6</td>
<td>Sankha S, et al.</td>
<td>2021</td>
<td>Google Scholar</td>
<td>MDA, protein carbonyl (PCO), GSH, SOD, GPx, catalase and SOD-to (GPx+ CAT) ratio</td>
<td>High levels of MDA and PCO while, reduced levels of GSH, SOD, SOD/(GPx+ CAT) ratio were observed in hypothyroid patients than controls.</td>
</tr>
<tr>
<td>7</td>
<td>Mahmood AS, et al.</td>
<td>2020</td>
<td>Scopus</td>
<td>CAT, SOD, and GR</td>
<td>CAT, SOD, and GR were significantly increased in hyperthyroidism whereas decreased in hypothyroidism.</td>
</tr>
<tr>
<td>8</td>
<td>Rabbani E, et al.</td>
<td>2020</td>
<td>PubMed</td>
<td>Thyroid profile, oxidative markers (MDA, TAC)</td>
<td>Anthropometric indices and TAC levels were decreased in hypothyroid patients.</td>
</tr>
<tr>
<td>9</td>
<td>Ates I, et al.</td>
<td>2018</td>
<td>PubMed</td>
<td>TOS, OSI</td>
<td>TOS and OSI levels were raised in while, paraoxonase-1 and alyesterase did not show any difference in overt hypothyroid patients compared with controls.</td>
</tr>
<tr>
<td>10</td>
<td>Kalpana P, et al.</td>
<td>2017</td>
<td>Google Scholar</td>
<td>Lipid profile, TBARS, vitamin E, vitamin C, iron, phosphorus</td>
<td>TC, LDL-C, VLDL, TGs, and FFA levels were elevated while HDL-C, minerals (iron, phosphorus) and vitamins (A, E) levels were reduced and serum lipid peroxidation was raised in hyperthyroidism compared to controls.</td>
</tr>
<tr>
<td>11</td>
<td>Deraz HA, et al.</td>
<td>2016</td>
<td>PubMed</td>
<td>MDA, SOD, CAT, TAC, lipid profile, thyroid profile</td>
<td>The levels of S. Cholesterol, TG, VLDL-C, and LDL-C were elevated and the difference was nonsignificant while the levels of S. HDL-C were lowered. Serum TAS levels were decreased in hypothyroid patients.</td>
</tr>
<tr>
<td>12</td>
<td>Kaur A, et al.</td>
<td>2016</td>
<td>Science Direct</td>
<td>Thyroid profile, lipid profile, TAS</td>
<td>TOS and OSI were elevated whereas no significant changes in paraoxonase-1 and alyesterase were observed in overt hypothyroid than in controls.</td>
</tr>
<tr>
<td>13</td>
<td>Ates I, et al.</td>
<td>2015</td>
<td>PubMed</td>
<td>TAS, TOS, OSI, total thiol, alyesterase</td>
<td>TAS level was decreased while TOS level was elevated in autoimmune thyroiditis patients but ox-LDL was not significantly change.</td>
</tr>
<tr>
<td>14</td>
<td>Baser H, et al.</td>
<td>2015</td>
<td>PubMed</td>
<td>TAS, TOS, ox-LDL</td>
<td>MDA level was higher in SCH while, AOPP and TAC were not significantly changed compared to controls.</td>
</tr>
<tr>
<td>15</td>
<td>Cheserek MJ, et al.</td>
<td>2015</td>
<td>PubMed</td>
<td>MDA, advanced oxidation protein products (AOPP), TAC</td>
<td>TAC reduced in hyperthyroidism but no change was observed in hypothyroidism while, catalase and SOD activity increased in hypo-and hyperthyroidism compared to healthy controls.</td>
</tr>
<tr>
<td>16</td>
<td>Nauzeri S, et al.</td>
<td>2014</td>
<td>ResearchGate</td>
<td>TAC, catalase, SOD</td>
<td>Increased MDA, PCO levels were found in OHT and SHT.</td>
</tr>
<tr>
<td>17</td>
<td>Haribabu A, et al.</td>
<td>2013</td>
<td>ResearchGate</td>
<td>MDA, protein carbonyl (PCO)</td>
<td></td>
</tr>
</tbody>
</table>
was found. In these studies, various oxidant/antioxidant and inflammatory markers were used to determine oxidative stress and its association with inflammatory processes. Most studies found a rise in ROS induced by an imbalance of thyroid hormones that can ultimately result in oxidative stress with a consequent lipid peroxidation response and accelerated inflammatory response.

DISCUSSION

Several investigations have shown a substantial variation in T3, T4, and TSH levels in the various thyroid oxidative stress conditions. As a result, oxidative stress development is significantly influenced by thyroid hormones. The metabolism of many cell in the body may be targeted, influenced, or changed by thyroid hormones because they speed up cellular reactions and boost oxidative metabolism. Oxidative stress develops when free radicals are generated excessive and the antioxidant defense system is ineffective [50]. Unsavaged free eventually damage vital cell components including DNA, proteins, and membrane-bound lipids. Each cell has a defence mechanism to counteract the consequences of free radical generation through DNA repair enzymes and/or antioxidants. MDA is formed as a result of lipid peroxidation. If pro-oxidants and oxidative stress are not effectively controlled, they can cause many chronic and degenerative diseases, aging, and pathologies. An imbalance in thyroid

<table>
<thead>
<tr>
<th></th>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Markers</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Reddy VS, et al.</td>
<td>2013</td>
<td>Science Direct</td>
<td>MDA, GSH, TAC as the ferric reducing ability of plasma (FRAP), SOD, GPx, SOD/GPx ratio and catalase</td>
</tr>
<tr>
<td>19</td>
<td>Rostami R, et al.</td>
<td>2013</td>
<td>PubMed</td>
<td>Thyroid profile, GSH, GPx, GR, GGT</td>
</tr>
<tr>
<td>22</td>
<td>Naazeri S, et al.</td>
<td>2012</td>
<td>ResearchGate</td>
<td>TAC, catalase, SOD</td>
</tr>
<tr>
<td>26</td>
<td>Torun AN, et al.</td>
<td>2009</td>
<td>PubMed</td>
<td>MDA, TAS, lipid profile</td>
</tr>
<tr>
<td>29</td>
<td>Baskol G, et al.</td>
<td>2007</td>
<td>PubMed</td>
<td>MDA, paraoxonase, nitric oxide, superoxide dismutase</td>
</tr>
</tbody>
</table>

The major target of oxidative stress, the mitochondria, may be responsible for tissue dysfunction associated with hyperthyroidism. MDA activity was increased whereas anti-oxLDL, TAS, and SOD levels showed no difference in hyperthyroid patients than healthy individuals.
Oxidative Stress & Inflammation in Thyroid Dysfunction: A Review

Figure 2: Vicious cycle

The onset and course of several diseases have been related to oxidative stress. Researchers suggest that the oxidative/anti-

Table 2: depicting Studies related to the inflammatory status in thyroid dysfunction patients

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Authors</th>
<th>Publication year</th>
<th>Sources of article</th>
<th>Parameters</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Suzan S, et al.</td>
<td>2021</td>
<td>Scopus</td>
<td>Hs-CRP, lipid profile, Osteopontin (OPN)</td>
<td>The serum concentration of Hs-CRP, TC, TGs, LDL-c, VLDL-c and osteopontin (OPN) was increased in hypothyroid patients.</td>
</tr>
<tr>
<td>2</td>
<td>El-Hefnawy KA, et al.</td>
<td>2019</td>
<td>Google Scholar</td>
<td>CRP, interleukin (II)-6, IL-10, lipid profile</td>
<td>Increased levels of CRP, IL-6, and IL-10 in subclinical hypothyroid patients.</td>
</tr>
<tr>
<td>3</td>
<td>Ahmad N, et al.</td>
<td>2018</td>
<td>Google Scholar</td>
<td>Hs-CRP</td>
<td>Hs-CRP activity raised in the thyroid dysfunction patients.</td>
</tr>
<tr>
<td>4</td>
<td>Savas E, et al.</td>
<td>2016</td>
<td>PubMed</td>
<td>Pro-calcitonin (PCT), C-reactive protein (CRP), mean platelet volume (MPV), and erythrocyte sedimentation rate (ESR)</td>
<td>ESR, CRP, and PCT were raised while MPV was reduced in both hypo and hyperthyroidism. ESR, and PCT levels were raised in autoimmune and non-autoimmune disorder patients whereas MPV decreased in hyperthyroidism, hyperthyroidism, and non-autoimmune patients than controls.</td>
</tr>
<tr>
<td>5</td>
<td>Marchiori RC, et al..</td>
<td>2015</td>
<td>PubMed</td>
<td>Thyroid profile, Hs CRP, Tumor necrosis factor alpha (TNF-α), interleukin 1, IL-10, TBARS, aminolevulinic acid dehydratase(α-ALA-D) and lipid profile</td>
<td>Increased levels of IL-10 and decreased levels of IL-1, and TNF-α while, no significant difference in hs-CRP was observed in hypothyroid patients</td>
</tr>
<tr>
<td>6</td>
<td>Gupta G, et al.</td>
<td>2015</td>
<td>Google Scholar</td>
<td>Lipid profile, ESR, CRP, interleukin-6</td>
<td>TC, TGs, and LDL-C were higher while HDL-C was lower in the subclinical hypothyroid compared to the euthyroid group. TSH level was positively associated with inflammatory markers in subclinical hypothyroid patients.</td>
</tr>
</tbody>
</table>

Oxidative stress system was not in balance in both hyperthyroidism and hypothyroidism. This imbalance might be brought on by changes in metabolic rates that cause excessive levels of nitric oxide, hydrogen peroxide (H₂O₂), and other ROS. Free radical overproduction causes tissue damage and inflammation, which in turn triggers the onset of related disorders. The majority of recent researches have observed that oxidative stress levels have risen in peripheral blood in thyroiditis due to various etiologies consequent to the decreased cellular ability to scavenge reactive oxygen species.12

Numerous studies have also shown that, independent of the type of thyroid dysfunction, there are substantial changes in the levels of inflammatory markers in autoimmune, non-autoimmune, hypothyroid, and hyperthyroid diseases. This confirms the significance of inflammation has role in the development of thyroid dysfunctions.46 There may be two approaches to describe how inflammation might increase oxidative stress. Firstly, inflammation may raise the quantity of H₂O₂ in thyroid epithelial cells. Secondly, inflammation may causes T and B lymphocytes to activate the NADPH oxidase (NOX) enzyme, which may raise the production of ROS.54

In addition to inflammatory processes, hormonal imbalances can also have a negative relationship with OS. Hormones generally regulate the normal generation of antioxidants which keeps oxidative stress to a minimum. OS is thus, connected to both hormonal imbalance and systemic inflammation. Heterogenous in vitro and in vivo investigations have shown that thyroid hormones are crucial in the regulation of a fine balance between antioxidant and prooxidant levels.10 Interestingly, deiodinases are the enzymes that convert T4 into...
T3 peripherally, as well as antioxidant enzymes like GP, both depend on reduced glutathione (GSH), an essential cofactor. Prior research has demonstrated that both hypothyroidism and hyperthyroidism, as well as the acute or chronic nonthyroidal disease syndrome whether with autoimmune or non-autoimmune basis, are found to be related to OS.

Total antioxidant status (TAS) and total oxidant status (TOS) are indicators of the system’s overall redox balance. According to Ates I, et al. concentrations of TAS, TOS, and OSI were examined between individuals with Hashimoto’s disease, euthyroidism, overt and subclinical hypothyroidism, and controls. As a consequence of their research, they found that TAS reduced and that TOS and OSI considerably rose during the disease’s various stages.

According to Borowska, et al. the amount of zinc in blood serum is lower in those who have Hashimoto’s thyroiditis. This may be due to the thyroid gland chronic inflammation or to an inadequate intake of zinc through diet. The biological activity of free T3 and T4 depends on zinc (as do selenium and iodine), and their metabolic activity is adversely impacted by zinc deficiencies.

A study by Hamed A. Deraz, et al. revealed that in both overt and subclinical hypothyroidism patients had significantly elevated concentrations of total cholesterol, TGs and LDL but a reduced level of HDL as compared to controls. Raised concentrations of total cholesterol and LDL seen in hypothyroidism may be due to various alterations in the production and metabolism of lipids. Thyroid hormones specifically T3 help to induce the HMG-CoA reductase and it is the very 1st step in the biosynthesis of cholesterol. They also help in the regulation of LDL cholesterol receptors which start the uptake of LDL-C which is rich in cholesterol by directly attachment to particular thyroid hormone-responsive elements.

After examining the linked between thyroid autoantibodies and OS indicators, a negative association of TAS level was found with anti-TG and anti-TPO, however, a positive association of TOS was found with anti-TG in the research by Baser et al. The oxidant compounds like malondialdehyde (MDA) and protein carbonyl were observed to positively correlate with anti-TPO levels, according to Nanda et al. GSH and anti-TPO had shown a negative correlation in the research of Rostami et al. By using a linear regression analysis, it was shown in the study by Ihsan Ates, et al. that the indicators of oxidative stress were shown to be impacted by hypothyroidism, which proclaims that OS is associated with thyroid hormone deficit, which is caused by enhanced auto-immunity and inflammation, or both.

Thus, it can be emphasized that inflammation, oxidative stress and thyroid dysfunction are all interconnected, supporting a model proposed by Antonio Mancini, et al. also holds good. Inflammation impacts thyroid function by altering hormone and cytokine levels, which may result in enhanced oxidative stress and can result in nonthyroidal illness syndrome or pituitary thyroid axis depression resulting in overt thyroid dysfunction. When hypothyroidism increases oxidative stress, which in turn exacerbates hypothyroidism by inhibiting deiodinases, a vicious cycle is established at the tissue level (Figure 2). The possible reason behind the blockage of the function of deiodinases might be due to the consumption of GSH in scavenging oxidant species generated due to increased OS. Thyroid hormones can thus, act as antioxidant regulators and be protective against OS.

IMPLICATIONS OF THE PRESENT SYSTEMATIC REVIEW

Policy Implications

In this research, various validated publications have been reviewed and assessed. To ascertain the reliability and accuracy of various aspects of current evidence available, the study’s authors have investigated and critically appraised various monitoring systems. The methods adopted were thoroughly examined and the outcomes obtained from various studies were synthesized together to arrive at meaningful and practically applicable conclusions.

FUTURE IMPLICATIONS

As included in this systematic review following may be the future implications of this study:

- Improvement in the oxidant/antioxidant balance may result in improvement in the prognosis of thyroid dysfunction patients.
- Improved prognosis in these patients may further lead to the minimization of long-term complications resulting in improvement in overall quality of life in thyroid dysfunction patients.
- Administration of antioxidants along with thyroid medications may improve overall outcomes in such patients.
- The knowledge synthesized from this study may pave the way for further studies in longer sample size with even more antioxidant, oxidant, and inflammatory parameters.

LIMITATIONS

In this systematic review article, only a limited number of articles could be included and were analyzed and only a few prospective and follow-up studies could be incorporated in the study. Most importantly, significant heterogeneity was found across various studies which hampered the building up of firm the association between underlying inflammatory processes and oxidative stress in thyroid dysfunction. Lastly, the majority of the research included in our study was conducted at a single-centre. Hence, high-quality prospective multi-centric studies need to be evaluated further.

CONCLUSION

Data from previous literature indicates that a multitude of mechanisms may be involved in the development of thyroid pathologies, consequent to which may result in a wide assay of thyroid diseases. Thyroid diseases may be caused by aberrant control of antioxidant enzymes and enhanced generation of pro-oxidants and ROS in hypo- and hyperthyroid states.
Various research suggests that thyroid levels and oxidative stress have an intricate connection. Recent studies indicate that mitochondrial reactive species may function as signalling molecules and mediate the production of proinflammatory cytokines, which further supports the link between OS and inflammation.

REFERENCES

41. Khaled A, EL-Hefnawy, Elsaid HH. Assessment of some inflammatory markers and lipid profile as risk factors for atherosclerosis in subclinical hypothyroid patients. The Egyptian journal of internal medicine. 2019; 31(2):115–21
47. Rizos CV, Elisaf MS, Liberopoulos EN. Effects of thyroid dysfunction on lipid profile. Open Cardiovasc Med J. 2011; 5: 76-84.