
INTRODUCTION

Pharmacokinetics of Voriconazole
Voriconazole is a broad-spectrum antifungal medication 
that belongs to the Biopharmaceutical Classification System 
(BCS) class II drugs. For a number of opportunistic invasive 
fungal infections, including Aspergillus, it is regarded as 
the first line of defense.1-3 However, the therapeutic window 
for voriconazole is narrow (1.0–5.5 mg/l).4 Additionally, 
elimination and bioavailability between adults and children 
exhibit considerable discrepancies,5,6 with clearance values 
in children being roughly half those in adults,8 (depicted 
in Figure 1).5-8 Voriconazole, however, has a limited 

therapeutic range (1.0–5.5 mg/l).4 Due to the substantial 
inter-individual pharmacokinetic variability of voriconazole, 
providing tailored therapy can be difficult.9,10 Additionally, 
the non-linearity keeps rising more than proportionally as 
the dosage is increased.11 Only a few of the variables that 
could affect a drug’s pharmacokinetics are those linked to its 
formulation, the structure of the gastrointestinal system, and 
the maturation or expression of enzymes.12,13 Out of these 
factors, the maturity and expression of enzymes are major 
contributors to the pharmacokinetic variability of poorly 
soluble drugs. Additionally, CYP2C19 contributes significantly 
to the variability in voriconazole’s pharmacokinetics14-16 

among the CYP family. Since CYP3A4 is reported to be 
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more active in adults than CYP2C19, this explains the non-
linear pharmacokinetics of voriconazole in adults.17-19 The 
pharmacokinetics (PK) of voriconazole, despite its extensive 
and repetitive use in individuals, display considerable intra 
and inter-subject heterogeneity, in addition to unsuccessful 
therapies and detrimental outcomes.20 So far, the variations 
in gastrointestinal composition particularly related to gut bile 
salts have not yet been researched as bile salts are potential 
modifiers of the dissolution behavior of lipophilic drugs.21 
Voriconazole, being lipophilic in nature, can show variations 
due to fluctuations in bile salts of the GIT. Additionally, bile 
salt solubilization advances together with the lipophilicity 
of poorly soluble drugs, and therefore, log p-values and 
molecular weight can be considered as vital parameters for 
assessing the solubility of drugs in bile salts.22 Certain drugs 
‘ luminal solubility, especially those belonging to BCS class 
II, can vary dramatically based on differences in the gut 
composition between adults and children.23 Also, compendial 
media are not favored over bio-relevant media for better in-vivo 
response prediction. Biorelevant media are created based on 
an individual’s age-specific gastrointestinal problems. The 
earliest years of life, where there are the most variances, are 
of particular interest.24-29 The ratios of intestinal bile salt 
concentrations seen in newborns, infants, and adults in relation 
to glycine/taurine varied from newborns to infants (7–12 
months) to adults in the range of 0.5 to 2.4 to 3.1, respectively.30

In addition, crucial components of the “patient-centric 
drug development” process are thought to include in-vitro 
dissolution studies conducted in age-specific biorelevant media 
coupled with physiologically based pharmacokinetic (PBPK) 
models.31 With the goal of reducing the requirement for animal 
and human research, in-vitro biorelevant dissolution studies 
linked with PBPK modeling have fast become recognized as a 
viable and trustworthy technique to support the pharmaceutical 
drug development process.32 The PBPK model is created based 
on the incorporation of system-related parameters (expression 
of metabolizing enzymes, blood flow, volume of a particular 
organ, organ clearance, etc.) and drug-related parameters 
(molecular weight, pKa, logP, fraction unbound, etc.) alongside 
mathematical computational techniques to forecast the pk 
profiles of the drug in a quantitative manner.33

Therefore, the objectives of the present study were: 1) to 
develop the population pk models based on experimentally 
obtained in-vitro dissolution data in biorelevant media 
for various age groups of pediatrics and then compare the 
simulated adult pop-pk profiles with the pediatric PK profiles 
following the same dosage administration. 

Subsequently, comparing the simulated PK profiles of 
different age groups of pediatrics following the same dosage 
administration of voriconazole to draw inferences on the role 
of bile salts in affecting the inter-individual variability of 
voriconazole.

MATERIALS AND METHODS
The list of the chemicals procured for carrying out the 
solubility and in-vitro dissolution studies was given in detail 
in the previously accepted manuscript.34 Further, the media 
preparation and the solubility studies were conducted as per 
pharmacopoeial methods and published literature.34-36 In-vitro 
dissolution studies in biorelevant and compendial buffers were 
also conducted based on pharmacopoeial methods. The details 
of the studies were mentioned in the accepted manuscripts.34,36-41

PBPK Model Development
All the models were created using the PK-Sim® software. On 
the basis of pertinent inputs, including drug-related parameters 
(LogP, Pka, solubility-pH profile, molecular weight, etc.) 
retrieved from literature, the baseline models were initially 
developed. The preliminary models and the models based 
on utilizing the in-vitro dissolution data were developed 
and qualified by comparing the model-predicted values with 
the values reported in the literature. A detailed overview of 
preliminary model development along with the incorporation of 
in-vitro dissolution data into the baseline models, was already 
mentioned in the manuscript under communication.41

Once the individual models were qualified. Then the virtual 
population of 100 individuals was created for both adults and 
pediatrics. The dose and dosing trials for adult and pediatric 
PBPK model development were based on published literature. 
The model development does not alter system-related features. 
The models were further evaluated by comparing them with the 
observed data available in the literature.5,6,21,41-43 Subsequently, 
population models of both adults and pediatrics were created 
using in-vitro dissolution estimates obtained in biorelevant 
medium with age-specific bile salt concentrations. The 
simulated pop-pk profiles of pediatrics were then compared 
with the adult profiles and with the pop-pk profiles of different 
pediatric age groups (neonates and infants).

RESULT
The results of solubility as well as in-vitro dissolution, are 
not shown in the present study (Detailed in the accepted 
manuscript).34 All the simulated population pk profiles were 
created utilizing the in-vitro dissolution data extracted in bio-
pertinent medium with age-specific bile salt concentrations. 
For the pop-pk model development, analysis of the population 
simulated profiles of children revealed large inter-individual 
variability in comparison to the adults. Additionally, the plasma 

Figure 1: Factors affecting pharmacokinetic variability of 
voriconazole5-8
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concentrations and Cmax values for pediatrics were found to 
be higher in comparison to the adults. The Cmax values for 
pediatrics were found to be nearly two folds lower than the 
adults with Cmax values of 10.39 and 3.97 μmol/ L for adults 
and pediatrics, respectively (as depicted in Figure 2.).5,6

Further, the results inferred that when the same dosage 
was administered to the different age groups, it showed wide 
variability in the individual pharmacokinetics. This could 
be attributed to the bile salt concentrations present in the gut 
which primarily alter the disposition of poorly soluble drugs. 

Further, upon comparing the pop-pk profiles of children 
with the infants and neonates showed higher plasma 
concentrations for neonates with Cmax of 2.02 μmol/l in 
comparison to infants and children with Cmax values of 1.22 
and 1.48 μmol/l, respectively (as depicted in Figure 3).5 

Although neonates have lower bile salt concentrations, 
the results showed higher plasma concentrations for neonates, 
which seems contrary to what we are proposing. Additionally, 
when the same dosage was administered to the different age 
groups in the pediatric population, it revealed significant 
inter-individual variability. However, based on the findings, 
it is possible to hypothesize that the pediatric inter-subject 
variability and the elevated plasma levels of voriconazole in 
neonates compared to children and infants may be linked to 
the development and maturity of specific enzymes that are 
predominant in the initial phases of life.44-54

DISCUSSION
As anticipated, disparities in bile salt levels between 
different age groups might contribute to the inter-individual 
heterogeneity of voriconazole. The population pharmacokinetic 
model of adults showed significantly higher inter-individual 
variation in comparison to pediatrics, which is consistent with 
the assumption.
Furthermore, the model predicted Cmax values for pediatrics, 
which were found to be nearly two-fold lower than the 
adults’. The results inferred that when the same dosage was 
administered to the different age groups, it showed wide 

variability in the individual pharmacokinetics. This could be 
attributed to the concentrations of bile salts in the gut, which 
primarily influence the rate and extent to which poorly soluble 
drugs are eliminated by rendering them more soluble or by 
making membranes more permeable to lipophilic molecules. 
However, different age groups in pediatrics showed minimal 
differences in the plasma concentrations, Cmax, and AUC 
values. Furthermore, the results showed higher Cmax values 
for neonates than children due to the fact that a few hepatic 
enzymes are completely developed and active throughout the 
neonatal phases of life, which may not be the case with children 
of older age groups.

Additionally, population PBPK modeling is essential for 
comprehending inter-individual variability. It is necessary 
to do further research with adequate clinical data to draw 
conclusions about the potential significance of variations in 
bile salt concentration on the inter-individual pharmacokinetic 
variability of voriconazole, especially in difficult-to-reach 
populations.44-47

CONCLUSION
Age-related developmental changes particularly associated 
with the bile salt variations might be one of the prominent 
contributors to the inter-individual pharmacokinetic variability 
of voriconazole. Additionally, based on the findings, bile salts 
are found to be significant contributors along with the maturity 
and expression of hepatic enzymes, which are anticipated to be 
the primary and dominant factor responsible for significant pk 
variations in different age groups. However, the theory could 
be further supported and validated with sufficient clinical data 
on the pediatric population. Additionally, the PBPK approach 
encourages the possibility of foreseeing the influence of bile 
salt discrepancies on the pharmacokinetics for numerous BCS 
class II and IV medications. This possibility may be helpful 
during the drug development process to develop safe and 
effective dosing, particularly in special populations or disease 
states, as well as lower the cost of in-vivo pharmacokinetic 
studies.

Figure 2: Comparison of model-predicted pop-pk profiles of children 
with adults following 4 mg/kg peroral administration of voriconazole.5,6

Figure 3: Population simulated profiles of children, infants, and 
neonates based on in-vitro dissolution conducted in biorelevant media 

with corresponding bile salt concentrations.5
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