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ABSTRACT 

This study examines transcriptional changes caused by treatment using differential gene expression and enrichment 

analysis. Gene Ontology (GO) enrichment revealed notable increase in biological processes connected to ribonucleoprotein 

complex biogenesis, ribosome biogenesis, and rRNA metabolic processes, as well as cellular components including the 

nucleolus and organelle lumen. Pathway enrichment with KEGG and Reactome databases showed increased activity in 

stress-response processes driven by EIF2AK4/GCN2, translation elongation, rRNA processing, and ribosome production. 

The increase of MYC-controlled gene sets also became clear, implying a key role for MYC in propelling transcriptional 

and translational activity. The notable enrichment of MYC targets and MYC-serum response genes was confirmed by Gene 

Set Enrichment Analysis (GSEA). With several genes exhibiting statistically significant expression changes, differential 

expression analysis between control and treated conditions revealed different gene regulation patterns, suggesting particular 

pathways altered by the treatment. These data combined demonstrate that the therapy activates MYC-driven transcriptional 

programs and increases ribosome and RNA processing activities, implying improved cellular biosynthetic and proliferative 

potential. 
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INTRODUCTION  

The rapid advancement of cancer genomics has revealed 

various genetic and epigenetic changes that contribute to 

tumour initiation, development, and therapy resistance1. 

Still, a great difficulty is finding consistent biomarkers that 

may distinguish between cancer kinds or forecast illness 

outcomes. Traditional methods of biomarker discovery can 

depend on high-throughput sequencing and expression 

profiling, which could miss small but clinically important 

molecular alterations2. Originally created for species 

identification, DNA barcoding has lately surfaced as a 

possible tool in molecular diagnostics because to its 

capacity to precisely monitor genetic variation over several 
different biological samples3. 

The exact identification of molecular changes in cancer has 

been made possible in recent years by the combination of 

DNA barcoding with sophisticated bioinformatics 

methods4. Traditionally used for species identification, 

DNA barcoding has become more popular in cancer for its 

capacity to tag and track genomic changes with high 

sensitivity and throughput5. Applied to cancer genomics, 

this method allows the high-resolution mapping of genetic 

and epigenetic alterations across several tumor types, hence 

enabling the identification of consistent biomarkers that 

might be utilized for diagnosis, prognosis, and tailored 

therapy6. Building a strong bioinformatics pipeline to 

maximize the full power of DNA barcoding can simplify 

the identification of clinically pertinent targets and enhance 

our knowledge of tumor heterogeneity and progression at a 

molecular level7. 

The purpose of this work is to analyze and construct a 

comprehensive bioinformatics pipeline that combines DNA 

barcoding and transcriptome profiling to uncover novel 

cancer biomarkers across diverse cancer types. The pipeline 

is meant to reveal molecular markers linked to changed 

gene expression, pathway activation, and transcriptional 

regulators like MYC by using multi-level enrichment 

analysis and publically available data sets. With a specific 
emphasis on gene sets showing common dysregulation 

across tumor kinds, the ultimate aim is to create a scalable 

framework that can be modified for individualised cancer 

diagnosis and treatment classification. 

 

METHODOLOGY 

Study Design 

This study used a computational systems biology approach 

to create and test a comprehensive bioinformatics pipeline 

targeted at discovering novel genomic and epigenetic 

cancer biomarkers, with a particular emphasis on MYC-

driven oncogenic pathways. Using a set of bioinformatics 
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tools—including edgeR, limma, Glimma, and pertinent 

annotation libraries—the gene expression study was 

performed. Preprocessing the RNA-Seq data by loading 

gene counts, mapping sample information, and normalizing 

expression values using edgeR and limma included the 

analytical process many important phases. Exploratory data 

analysis (EDA) came next; heatmaps and Principal 

Component Analysis (PCA) were employed to evaluate 
gene expression patterns and sample clustering. Using both 

edgeR and the limma-voom pipeline, differential 

expression analysis was then conducted to find genes that 

were notably elevated or downregulated. The 

org.Mm.eg.db package was finally used for gene 

annotation; functional enrichment analysis was done via 

Gene Ontology (GO) and KEGG pathways to find pertinent 

molecular pathways and biological processes. 

Sample Collection and Data Acquisition 

Publicly available RNA-seq datasets representing multiple 

cancer types and matched normal controls were retrieved 

from repositories such as The Cancer Genome Atlas 

(TCGA) and Gene Expression Omnibus (GEO). Additional 

DNA methylation profiles and genome-wide data were 

sourced to include potential epigenetic modifications 

relevant to gene expression changes. 

DNA Barcoding and Gene Annotation 
DNA barcoding is a molecular approach for identifying and 

distinguishing species using short, standardized DNA 

sequences. DNA barcoding was used in this work to 

guarantee species specificity and correct gene identification 

by matching unique barcode sequences to reference 

genomes utilizing methods including BLAST and BWA-

MEM. Once the barcode sequences were mapped, gene 

annotation was done utilizing standardized reference 

sources like GENCODE and Ensembl. Exact identification 

of genes of interest made possible by this stage allowed 

cross-referencing with known cancer-related gene panels 

such COSMIC and MSigDB8. Especially in the 

examination of complicated transcriptome data spanning 

several cancer kinds, the combination of DNA barcoding 

with gene annotation offered a consistent basis for 

monitoring gene identification and activity. 

Data Analysis 

Analysis of differential gene expression between control 

and treatment groups showed elevation of genes linked to 

ribonucleoprotein assembly, rRNA processing, and 

ribosome biogenesis. Pathway enrichment and GO verified 

the activation of translation-related pathways. Analysis of 
MYC target genes revealed significant MYC-driven 

transcriptional activity. MA and volcano plots showed 

obvious expression changes. These results point to 

improved biosynthetic and MYC-regulated activities under 

therapy. 

 

RESULTS  

Emphasizing important biological processes (BP) and 

cellular components (CC), Table 1 highlights the most 

enriched Gene Ontology (GO) terms linked with the 

differentially expressed genes. Among the most notably 

enriched words are ribonucleoprotein complex biogenesis, 

ribosome biogenesis, and rRNA metabolic process, all of 

which are considerably elevated with very low p-values 

(e.g., PUp=1.02\times 10^{-40}). Especially, these 

processes are basic to tasks connected to RNA and 

ribosomes, thereby indicating more transcriptional and 
translational activity.  

Prominently enriched as well as cellular components 

including the nucleolus and other lumen-associated 

compartments, which help to confirm the higher 

biosynthetic and metabolic activity seen in the sample. All 

things considered, the results point to a significant 

stimulation of ribosome assembly routes and RNA 

processing in the investigated state. 

Table 2 presents pathway enrichment results showing 

significantly upregulated biological pathways. The 

KEGG_RIBOSOME pathway is the most significantly 

enriched, with 104 genes involved and a highly significant 

p-value (2.18 × 10⁻¹³), suggesting enhanced ribosomal 

activity. 

  
Figure 1: Gene Set Enrichment Plot for MYC Targets Figure 2: Gene Set Enrichment Plot for Schlosser MYC 

Targets and Serum Response 
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Similarly, 

REACTOME_EUKARYOTIC_TRANSLATION_ELONGAT

ION and REACTOME_rRNA_PROCESSING are strongly 

enriched, indicating increased translation and RNA 

maturation processes. Other notable pathways include 

rRNA modification and response to amino acid deficiency 

via EIF2AK4/GCN2, pointing to coordinated regulation of 

protein synthesis and cellular stress responses. These results 

reinforce the transcriptomic activation of ribosome 

biogenesis and translational control mechanisms. 

Indicating a significant transcriptional activation of MYC 

targets, Table 3 shows the enrichment results of 15 MYC-

related gene sets. With statistically significant p-values (P 
< 0.01) and low false discovery rates (FDR < 0.05), most 

gene sets reveal a high proportion of upregulated genes 

(e.g., CAIRO_PML_TARGETS_BOUND_BY_MYC_UP, 

DANG_MYC_TARGETS_UP, and 

SCHUHMACHER_MYC_TARGETS_UP). Consistent 

overexpression across several MYC-controlled pathways 

indicates improved MYC activity, which may help to drive 

more cell growth and metabolic activity. Only one gene set, 

ODONNELL_TARGETS_OF_MYC_AND_TFRC_UP, 

indicated a downregulation pattern, implying context-

specific MYC suppression. Mixed-model statistics reveal 

MYC as a major control point in the seen transcriptome 

environment, hence supporting these results.  

Figure 1 illustrates a Gene Set Enrichment Analysis 

(GSEA) enrichment plot for MYC target genes. The 

enrichment score (ES) curve peaks toward the right side of 

the ranked gene list, indicating that MYC target genes are 
predominantly upregulated. The barcode-like vertical lines 

along the x-axis mark the positions of MYC target genes 

within the ranked list, showing a high concentration in the 

positively ranked region (red zone), further supporting 

significant enrichment. The overall distribution confirms 

transcriptional activation of MYC-regulated genes, 

consistent with the tabular findings showing strong 

upregulation of MYC-associated gene sets. 

The GSEA enrichment map for the "Schlosser MYC 

Targets and Serum Response" gene set is shown in Figure 

2. The enrichment score (ES) curve reveals a moderate 

peak, implying an enrichment trend of these genes toward 

the upregulated end of the ranked gene list. Though 

somewhat skewed toward the right (upregulated genes), the 

distribution of black vertical bars—representing individual 

genes from the set—is fairly balanced. This pattern suggests 
a functional synergy between MYC activation and serum-

induced transcriptional alterations since it shows a 

coordinated activation of MYC-responsive genes similarly 

affected by serum signaling. This supports earlier findings 

indicating statistically significant enrichment for this gene 

set (FDR.Mixed = 0.0215). 

Figure 3 depicts how gene expression differs between the 

control and treatment groups. Indicating a strong 

transcriptional reaction to treatment, the MA plot shows a 

clear distinction between upregulated and downregulated 

genes. Though showing significant fold changes, most of 

the differentially expressed genes lie in modest expression 

ranges, highlighting their biological importance. By 

stressing genes with both statistically significant p-values 

and significant fold changes, the volcano graphic (right 

panel) supports these findings. Annotated among several 

downregulated genes (blue) are hints of their possible 
importance in the treatment response. All things considered, 

these findings highlight a significant differential expression 

pattern that supports the theory that the therapy causes 

Table 1: Gene Ontology (GO) Enrichment Analysis for Differentially Expressed Genes (A data.frame: 10×7)  
Term Ont N Up Down P.Up P.Down  
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 

GO:0022613 ribonucleoprotein complex 
biogenesis 

BP 438 58 1 1.024448e-40 0.98585390 

GO:0042254 ribosome biogenesis BP 318 51 0 4.772027e-40 1.00000000 

GO:0016072 rRNA metabolic process BP 253 43 0 6.308112e-35 1.00000000 

GO:0005730 nucleolus CC 922 71 7 3.567176e-34 0.78496379 

GO:0070013 intracellular organelle lumen CC 4635 156 53 7.195726e-33 0.09264683 

GO:0031974 membrane-enclosed lumen CC 4636 156 53 7.382373e-33 0.09291828 

GO:0043233 organelle lumen CC 4636 156 53 7.382373e-33 0.09291828 

GO:0006364 rRNA processing BP 214 37 0 1.975565e-30 1.00000000 

GO:0034641 cellular nitrogen compound 

metabolic process 

BP 5928 173 72 1.362984e-29 0.01482779 

GO:0006396 RNA processing BP 919 64 5 2.987303e-28 0.94254153 

Table 2: Pathway Enrichment Analysis of Upregulated Genes Based on KEGG and Reactome Databases 

A data.frame: 5×4 NGenes Direction PValue FDR  
<dbl> <chr> <dbl> <dbl> 

KEGG_RIBOSOME 104 Up 2.179977e-13 9.467755e-10 

REACTOME_EUKARYOTIC_TRANSLATION_ELONG
ATION 

110 Up 3.424762e-13 9.467755e-10 

REACTOME_RRNA_PROCESSING 225 Up 7.698522e-13 1.418838e-09 

REACTOME_RRNA_MODIFICATION_IN_THE_NUCL

EUS_AND_CYTOSOL 

61 Up 2.112510e-11 2.874945e-08 

REACTOME_RESPONSE_OF_EIF2AK4_GCN2_TO_AM

INO_ACID_DEFICIENCY 

119 Up 2.606293e-11 2.874945e-08 
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particular transcriptional changes justifying more 

functional research. 

 

DISCUSSION 

The study shows a strong and biologically relevant 

transcriptional response based on the findings shown in 

Tables 1–3 and Figures 1–3, marked by notable enrichment 

of gene ontology (GO) categories and molecular pathways 

connected to ribosome biogenesis, RNA processing, and 

MYC-regulated gene expression.  

These results support the main function of translational 
control and MYC activation in driving cell proliferation and 

metabolic reprogramming by significant agreement with 

earlier published research. 

Heightened translational activity, a characteristic of fast 

proliferating cells, is shown by the overexpression of genes 

linked to ribonucleoprotein complex synthesis, ribosome 

biogenesis, and rRNA metabolic process (Table 1). This 

trend fits which underlined that cancer cells commonly 

show dysregulation of ribosome biogenesis and rRNA 

processing to satisfy higher protein synthesis needs9. 

Likewise, research underlined that particularly in cancers 

with MYC overexpression, increased ribosome production 
is strongly related to oncogenic change and fast cellular 

Table 3: Enrichment Analysis of MYC-Associated Gene Sets 

A data. frame: 15 × 8 NGenes PropDown PropUp Direction PValue FDR PValue.Mixed FDR.Mixed  
<int> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> 

SCHUHMACHER_
MYC_TARGETS_U

P 

105 0.06666667 0.5142857 Up 0.001 0.003583333 0.004 0.02150000 

PID_MYC_ACTIV_

PATHWAY 

108 0.10185185 0.5000000 Up 0.001 0.003583333 0.003 0.02150000 

DANG_REGULATE

D_BY_MYC_UP 

95 0.12631579 0.4842105 Up 0.001 0.003583333 0.006 0.02627778 

SCHLOSSER_MYC

_TARGETS_REPRE

SSED_BY_SERUM 

211 0.14218009 0.4312796 Up 0.001 0.003583333 0.001 0.02150000 

KIM_MYC_AMPLIF

ICATION_TARGETS

_UP 

268 0.14552239 0.3059701 Up 0.001 0.003583333 0.037 0.11210714 

BENPORATH_MYC

_TARGETS_WITH_

EBOX 

349 0.15759312 0.2550143 Up 0.001 0.003583333 0.061 0.12388095 

CAIRO_PML_TARG

ETS_BOUND_BY_
MYC_UP 

30 0.06666667 0.5666667 Up 0.002 0.006450000 0.002 0.02150000 

DANG_MYC_TARG

ETS_UP 

172 0.11046512 0.5581395 Up 0.002 0.006450000 0.003 0.02150000 

COLLER_MYC_TA

RGETS_UP 

29 0.06896552 0.4827586 Up 0.002 0.006450000 0.004 0.02150000 

SCHLOSSER_MYC

_TARGETS_AND_S

ERUM_RESPONSE_

UP 

81 0.14814815 0.3086420 Up 0.002 0.006450000 0.031 0.10929167 

BILD_MYC_ONCO

GENIC_SIGNATUR

E 

333 0.16816817 0.2312312 Up 0.003 0.009772727 0.058 0.12388095 

ACOSTA_PROLIFE

RATION_INDEPEN

DENT_MYC_TARG

ETS_UP 

107 0.12149533 0.2803738 Up 0.005 0.016125000 0.071 0.13554348 

ODONNELL_TARG

ETS_OF_MYC_AN
D_TFRC_UP 

191 0.28795812 0.1256545 Down 0.006 0.018192308 0.080 0.14243750 

ODONNELL_TARG

ETS_OF_MYC_AN

D_TFRC_DN 

58 0.10344828 0.5172414 Up 0.008 0.023035714 0.007 0.02795000 

SCHLOSSER_MYC

_TARGETS_AND_S

ERUM_RESPONSE_

DN 

74 0.14864865 0.5000000 Up 0.011 0.027472222 0.004 0.02150000 
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proliferation. Further supporting this finding is pathway 

analysis (Table 2), which reveals notable enrichment of 

KEGG and Reactome pathways connected to ribosome 

construction, translation elongation, and rRNA processing. 

Particularly the REACTOME_RRNA_PROCESSING and 

KEGG_RIBOSOME pathways are closely controlled 

processes often elevated in cancers10. EIF2AK4/GCN2's 

reaction to amino acid deficit also shows an adaptive 
metabolic mechanism consistent with the idea of nutrition 

sensing and stress pathway activation in fast proliferating 

or stressed cells11.  The enrichment of MYC-associated 

gene sets (Table 3 and Figures 1 & 2) offers more insight 

into the regulatory network underlying these transcriptome 

alterations. Orchestrating a wide range of biological 

activities including cell cycle progression, metabolism, and 

ribosome biogenesis, MYC is a well-known oncogenic 

transcription factor12. The regular upregulation of MYC 

target genes like 

SCHUHMACHER_MYC_TARGETS_UP, 

DANG_MYC_TARGETS_UP, and 

KIM_MYC_AMPLIFICATION_TARGETS_UP 

substantially supports the idea that MYC operates as a 

primary transcriptional driver in the examined situation. 

Especially, the gene sets reveal statistically substantial 

enrichment (FDR < 0.05), and the GSEA plots (Figures 1 & 
2) support this pattern by showing enrichment scores 

highest near the upregulated end of the gene ranks. 

One MYC-related gene set 

(ODONNELL_TARGETS_OF_MYC_AND_TFRC_UP) 

was found to be downregulated, which could suggest 

context-specific transcriptional repression possibly 

connected to treatment-specific feedback inhibition or 

selective suppression of iron-regulatory networks as 

reported in a prior study13. This subtle result implies that 

although MYC is usually activated, its downstream 

consequences could differ depending on cellular 

environment and outside influences.  At last, the differential 

gene expression study (Figure 3) emphasizes the biological 

effect of the treatment condition by revealing extensive 

transcriptional changes with many genes showing 

significant fold changes and high statistical relevance. 

These findings are consistent with earlier transcriptome 

research on the impact of oncogenic signaling and targeted 

therapeutics14, which usually show different and 

physiologically meaningful patterns of gene activation and 

repression in reaction to certain treatments. This study 

offers a strong basis for future investigation of MYC-related 
therapeutic vulnerabilities and translational control in 

illness settings in addition to validating existing biological 

pathways.  

 

CONCLUSION  

The study finds a strong activation of ribosome biosynthesis 

pathways and MYC-regulated gene networks in reaction to 

therapy. Consistently, enrichment studies from GO, KEGG, 

and Reactome show activation of transcriptional and 

translational machinery; MYC stands out as a key 

controller. These results suggest that MYC-driven 

transcriptional reprogramming and improved ribosome 

assembly allow the therapy to stimulate increased cellular 

metabolic and proliferative reactions. 
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