Available online on www.ijpcr.com

International Journal of Pharmaceutical and Clinical Research 2021; 13(4); 181-187

Original Research Article

Comparative Research on the Effectiveness and Safety of Long-Acting Antihistamines in Allergic Conjunctivitis in Indian Patients: An RCT Trial

Prashant Kumar¹, Anurag Verma²

¹Assistant Professor, Department of Ophthalmology, Anugrah Narayan Magadh Medical College Hospital (ANMMCH), Gaya, Bihar, India.

²Assistant Professor, Department of Ophthalmology, Anugrah Narayan Magadh Medical College Hospital (ANMMCH), Gaya, Bihar, India.

Received: 02-06-2021 / Revised: 15-06-2021 / Accepted: 13-07-2021

Corresponding author: Dr. Anurag Verma

Conflict of interest: Nil

Abstract

Aim: The aim of the present study was to compare the safety and efficacy of Alcaftadine 0.25%, Olopatadine hydrochloride 0.2% and Bepotastine besilate 1.5% in allergic conjunctivitis. **Methods:** A total of 90 patients with mild or moderate allergic conjunctivitis were randomized into three groups with an allocation ratio of 1:1:1 using computer-generated random number sequence to receive topical anti-allergic medication for 14 days as Group 1: Topical 0.25% Alcaftadine eye drops OD, Group 2: Topical 0.2% Olopatadine eye drops OD and Group 3: Topical 1.5% Bepotastine besilate eye drops BID. Patients were examined and their baseline symptoms and signs (TOSS) were recorded. Results: The 4 major complaints recorded by patients were itching (30 patients, 100%), redness (22 patients, 73.33%), tearing (25 patients, 83.33%), and swelling (13 patients, 43.33%). The total ocular symptom score (TOSS) showed a consistent decrease in subsequent visit in all the Groups and it was statistically significant, when compared from baseline to 14th day in all the groups (p=0.0008). The difference in mean TOSS between (Group A) Alcaftadine and (Group C) bepotastine treatment groups was observed at the third day of follow-up. This showed early relief of allergic conjunctivitis symptoms by bepotastine (5.57 \pm 1.26) compared to Alcaftadine (mean (6.31 \pm 1.47) and olopatadine (6.31 \pm 1.47) but this was not statistically significant. Total ocular symptom score at 14th day visit with post hoc Tukey HSD test showed mean of Alcaftadine group vs mean of olopatadine group -p < 0.05, mean of olopatadine group vs mean of bepotastine group – p<0.01, which were statistically significant whereas mean of Alcaftadine group vs mean of bepotastine group showed no significant difference. Alcaftadine was found to be better than olopatadine in reducing the Allergic Conjunctivitis symptoms using TOSS score at 14th day visit (p < 0.5). Although there is no significant difference between bepotastine and Alcaftadine groups, bepotastine showed a better reduction of symptoms compared to Olopatadine group using TOSS score at 14th day visit (p<0.1). Conjunctival hyperaemia had reduced in all the treatment groups but there was a significant reduction in Alcaftadine and Bepotastine treatment groups at 14th day compared to olopatadine group (p = 0.0023). **Conclusion:** All three topical ophthalmic medications used in the study are safe and effective in the treatment of allergic conjunctivitis. However, Bepotastine and Alcaftadine appear to outweigh Olopatadine in resolving the symptoms of allergic conjunctivitis.

Keywords: Alcaftadine, allergic conjunctivitis, Bepotastine besilate, hyperaemia scale, olopatadine, Total ocular symptom score (TOSS)

This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

The conjunctiva of the eye is continually exposed to a variety of airborne antigens that can lead to inflammation, termed allergic conjunctivitis,[1] which is an ocular surface inflammatory disease that affects approximately 40% of the global population.[2] It is predominantly IgE mediated Type I hypersensitivity reaction where allergen binds to specific IgE molecules, triggers mast cell degranulation and subsequent increase in histamine leading to activation of both H₁ and H₂ types of histamine receptors.[3]Allergic conjunctivitis includes persistent allergic conjunctivitis, seasonal allergic conjunctivitis (SAC), vernal kerato conjunctivitis (VKC), and atopic keratoconjunctivitis. SAC is about 25%-50% of cases.[4] Number of causes have been considered for this increase such as genetics, air pollution, pets, etc.[5] Various forms of conjunctivitis such as seasonal allergic conjunctivitis, perennial allergic conjunctivitis, vernal keratoconjunctivitis (VKC), atopic keratoconjunctivitis, and giant papillary conjunctivitis are included in ocular allergy, sharing some common markers of allergy.[6] Seasonal and perennial conjunctivitis are in response to exposure to specific allergans and are predominantly mediated by IgE antibodies activating the mast cells.[7,8] VKC is in response to non-specific allergans and is mediated mainly by Th2 cells, but mast eosinophils also and play majorrole.[9,10] Atopic conjunctivitis occurs in patients predisposed to atopy. It is mediated by both Th2 response and mast cells.[11] Avoidance of allergans and lubricants plays a key role in the management of allergic conjunctivitis. Addition of anti-histaminics such as levocarbastine reduce inflammation, whereas mast cell stabilizers prevent mast

degranulation on exposure allergans.[12,13] Topical corticosteroids are the most potent agents to control inflammatory symptoms, but their use is not devoid of side-effects.[14,15] Recently, introduced topical agents have both anti-histaminic and mast cell stabilization action.[16] Their use can control acute symptoms and prevent relapses as well. agents (such as olopatadine, bepotastine, and alcaftadine) are FDA approved for use in allergic conjunctivitis, but there is not much literature comparing these three agents directly. Being a chronic condition, prudent use of medicament is needed because drug treatment is prolonged and frequent. There were only minimal research studies done in VKC comparing efficacy and safety of 0.1% olopatadine and 1.5% bepotastine in India. Considering the paucity of comparative studies between long-acting anti-histamines, Alcaftadine 0.25% and Olopatadine hydrochloride 0.2% Bepotastine and besilate 1.5% in Allergic conjunctivitis with regard to efficacy and safety amongst Indian patients, this study was undertaken.

ISSN: 0975-1556

Material and methods

This randomized, prospective, parallel-group study was done the Department of Ophthalmology, Anugrah Narayan Magadh Medical College Hospital (ANMMCH), Gaya, Bihar, India for 11 months, after taking the approval of the protocol review committee and institutional ethics committee. After taking informed consent detailed history was taken from the patient or relatives.

Patients with severe allergic conjunctivitis, need for topical steroids or topical immunosuppressive, contact lens wearers, patients with an intra-ocular pressure of more than 21 mm Hg in either eye or any

type of glaucoma, history of hypersensitivity to the study medications or their components (including benzalkonium chloride), history of an ocular herpetic infection, an active ocular infection, or any significant illness, taking systemic steroids or antihistamines currently or within 7 days prior to enrolment, pregnant, planning pregnancy, or nursing/lactating and use of any other topical ocular medications were excluded from the study. A total of 90 patients with mild or moderate allergic conjunctivitis were randomized into three groups with an allocation ratio of 1:1:1 using computer-generated random number sequence to receive topical anti-allergic medication for 14 days as follows:

Group 1: Topical 0.25% Alcaftadine eye drops OD

Group 2: Topical 0.2% Olopatadine eye drops OD

Group 3: Topical 1.5% Bepotastine besilate eye drops BID.

general, physical, Complete and ophthalmologic examination was done. Patients were examined and their baseline symptoms and signs (TOSS) were recorded. Demographic data, ocular and medical histories. concomitant medications. physical examination, clinical examination, including recording vital of signs, Ophthalmological examination and details of drug prescribed by the treating ophthalmologist were recorded in the study pro forma at baseline visit (visit 1). Follow-up visits were on day 3 (visit 2), day 7 (visit 3) and day 14 (visit 4) after administering the study drugs. At each follow-up visit data on concomitant medications, ocular symptoms and ocular signs using hyperaemia score (Table 1)¹⁷ graded by slit-lamp examination by the investigator and adverse events (AEs) were collected. In case of relapse, the patient was asked to visit OPD on Day 21. Medication compliance was assessed with the help of a medication compliance card. Safety of study medications was assessed by ADRs.

ISSN: 0975-1556

Statistical analysis

The sample size was calculated at a confidence level of 95%, the sample size determined was 50subjects in each treatment group. All data were analyzed by Microsoft Excel and Statistical Package for Social Sciences (SPSS version 23.0). Continuous variables are presented as mean ± standard deviations (SD's) and the categorical variables as percentages. Comparison of TOSS and adverse effect scores between and within group at different time points (baseline, days 1, 3, 7 and 14) was performed by ANOVA with repeated measure analysis and with Bonferroni corrections. The value of p <0.05 were considered to be statistically significant.

Table 1: TOSS and hyperaemia score grading

rable 1. 1000 and hyperacina score grading		
0	Indicating no symptoms	
1+	Mild symptoms of discomfort which were just noticeable	
2+	Moderate discomfort noticed most of the day but did not interfere with daily activities	
3+	Severe symptoms interfering with daily activities	

Table 2: Hyperaemia score Grading of signs

0 -No	Normal
0.5 -Trace	Inconsistent rose red hyperaemia
1-Mild	Reddish color
2-Moderate	Bright red color
3-Severe	Bright and intense diffuse hyperaemia

Results

A total of 105 patients were screened for the study of which 90 patients with mild or moderate allergic conjunctivitis, who met the required inclusion and exclusion criteria were included in the study. Age, gender, and TOSS and hyperaemia scores were matched at baseline [Table 2]. Table 2 represents the demographic profile of the patients included in the study. Both the treatment groups were matched with respect to baseline demographic characteristics.

The 4 major complaints recorded by patients were itching (30 patients, 100%), redness (22 patients, 73.33%), tearing (25 patients, 83.33%), and swelling (13 The patients, 43.33%). total ocular score (TOSS) symptom showed consistent decrease in subsequent visit in all the Groups and it was statistically significant, when compared from baseline to 14^{th} day in all the groups (p = 0.0008)(Table 3) The difference in mean TOSS between (Group A) Alcaftadine and (Group C) bepotastine treatment groups was observed at the third day of follow-up. This showed early relief of allergic conjunctivitis symptoms by bepotastine (5.57 ± 1.26) compared to Alcaftadine (mean (6.31 ± 1.47) and olopatadine (6.31 \pm 1.47) but this was not statistically significant.

Total ocular symptom score at 14th day visit with post hoc Tukey HSD test showed mean of Alcaftadine group vs mean of olopatadine group -p < 0.05, mean of olopatadine group vs mean of bepotastine group -p < 0.01, which were statistically significant whereas mean of Alcaftadine group vs mean of bepotastine group showed non-significant difference. Alcaftadine was found to be better than olopatadine in the Allergic Coniunctivitis reducing symptoms using TOSS score at 14th-day visit (p < 0.5). Although there is no significant difference between bepotastine Alcaftadine groups, bepotastine showed a better reduction of symptoms compared to Olopatadine group using TOSS score at 14thday visit (p<0.1). Conjunctival hyperaemia had reduced in all the treatment groups but there was a significant reduction in Alcaftadine and Bepotastine treatment groups at 14th day compared to olopatadine group (p = 0.0023) (Table-4) No systemic or ocular serious adverse events were reported. Most common adverse events were burning sensation (4) in Alcaftadine group and taste impairment (4) in bepotastine group, followed by headache (3) Alcaftadine group, dizziness (3) in olopatadine and mild redness (3) in noted. bepotastine group were significant difference in the number of adverse events was noted among the three groups.

ISSN: 0975-1556

Table 2: demographic profile of the patients

	Group A	Group B	Group C	
Parameter	Alcaftadine	Olopatadine	Bepotastine	P-value
	(n=30)	(n=30)	(n=30)	
Age (years) (Mean±SD)	29.78 ±11.63	29.88±9.74	32.23±10.69	0.15
Gender n (%)				0.17
Male	21 (70%)	18(60%)	25 (83.33%)	
Female	0 (200/)	12 (400/)	5 (16 (70/)	
Total Ocular Symptom Score	9 (30%)	12 (40%)	5 (16.67%)	
	9.03±2.54	9.03±2.75	9.15±2.63	0.59
(TOSS)				

Table 3: Total ocular symptom score at different visits

Parameter	Group A Alcaftadine	Group B Olopatadine	Group C Bepotastine	P-value
	(n=30) Mean (SD)	(n=30) Mean (SD)	(n=30) Mean (SD)	
Day 1 (Baseline)	8.24 (2.31)	8.24 (2.31)	8.06 (2.24)	0.59
Day 3	6.31 (1.47)	6.31 (1.47)	5.57 (1.26)	0.16
Day 7	2.6(1.23)	2.5 (0.71)	2.4 (1.01)	0.19
Day 14	0.3 (0.43)	0.5 (0.52)	0.2 (0.31)	0.0008

Table 4: Conjunctival hyperaemia score at different visits

Variable	Group A Alcaftadine	Group B Olopatadine	Group C Bepotastine	P-value
	(n=30) Mean (SD)	(n=30) Mean (SD)	(n=30) Mean (SD)	
Day 1 (Baseline)	1.5 (0.70)	1.6 (0.70)	1.6 (0.61)	0.9
Day 3	0.7 (0.52)	0.7 (0.52)	0.7 (0.45)	0.9
Day 7	0.2 (0.17)	0.2 (0.17)	0.2 (0.17)	0.8
Day 14	0.006 (0.08)	0.05 (0.12)	0.005 (0.07)	0.0023

Discussion

Most of the earlier studies comparing the efficacy of anti-allergic medications were conjunctival according to allergen challenge. In this model, antigens are instilled in both eyes of subjects, and then, the efficacy of anti-allergic medications to reduce symptoms is evaluated. This model can mimic acute allergic response in a normal subject but not exactly similar to acute response in a patient with chronic allergic conjunctivitis or an acute response in a patient prone to allergic conjunctivitis. Ocular allergy is a commonly encountered pathology in clinical practice, with an increase in the number of patients noticed in the last decade with a prevalence of approximately 40% of the population globally. Avoidance of allergens plays a key role in the prevention of allergic conjunctivitis. Addition of anti-histamine reduces inflammation, whereas mast cell stabilizers prevent mast cell degranulation on an exposure to allergens. Topical corticosteroids are the most potent agents to control inflammatory symptoms of allergic conjunctivitis but there is a risk of many side effects. Newer topical agents have both anti-histamine and mast cell stabilization action. Their use can control acute

symptoms and prevent relapses.[18] A comparative study done by Dudeja I, et al. concluded Alcaftadine 0.25%, olopatadine 0.2%, and bepotastine 1.5% eyedrops have been proved to be safe and well-tolerated medication topical for conjunctivitis.[17] This study resounded the same, and the medications were found to be safe, with minimal transient side effects of burning sensation and taste impairment noticed by a few patients (more in group 1 and group 3, respectively). Most patients responded to treatment and were willing to continue the eye drop, if indicated.

ISSN: 0975-1556

The efficacy of these anti-allergic medications over placebohas been proven in a study conducted by Donshik et al. All three medications showed significant relief in symptoms of redness and itching, which was proved statistically.[19] This study showed that all three study medications provide significant relief in symptoms from baseline to 14 days.

A study done by Ackerman S, et al. compared 0.25% Alcaftadine and 0.2% olopatadine using conjunctival allergen challenge found Alcaftadine superior to olopatadine at the earliest time point (3 min post-challenge). Alcaftadine showed

significant relief in chemosis at 16 and 24 h post-instillation.[20] Another study done by McLaurin EB, et al., with 284 subjects found that subjects treated with Alcaftadine had a lower overall mean itch score of 3, 5, and 7 min than those treated with olopatadine.[21] This study results also showed Alcaftadine is better in reducing the Allergic conjunctivitis symptoms compared to Olopatadine at 14th day, which is statistically significant (p = 0.0008).

A comparative study done by McCabe et al. showed Bepotastine provided better relief of ocular allergy symptoms and nonocular associated symptoms with Allergic conjunctivitis, that is, runny nose compared to olopatadine. The study also found that a higher percentage of patients preferred bepotastine olopatadine over treatment.[22] The current study indicates a significant relief of Allergic conjunctivitis symptoms with Bepotastine besilate than olopatadine group at 14th day, which is statistically significant (p = 0.0008).

Trials have been conducted at a cellular level, animals treated with Olopatadine and Alcaftadine showed similar efficacy and safety profiles. One such study done by Ono SJ, et al. found a decrease in expression of the junctional protein, ZO-1, which is caused by allergen challenge with Alcaftadine compared to olopatadine. In addition, Alcaftadine showed significantly lower conjunctival eosinophil infiltration caused by allergen challenge in animal studies.[23]

Clinical trials, thus, have proved the efficacy of all three medications for relief of symptoms of allergic conjunctivitis and found differences between medications in one or the other parameter. In our study, all three medications are effective in control of allergy symptoms with bepotastine group and Alcaftadine groups showing statistical significance as compared to olopatadine group in alleviating the allergic conjunctivitis symptoms.

Conclusion

According to the findings of the current investigation, all three topical ophthalmic medicines employed in the study are safe and effective in the treatment of allergic conjunctivitis. Bepotastine and Alcaftadine, on the other hand, appear to outperform Olopatadine in curing the symptoms of allergic conjunctivitis.

ISSN: 0975-1556

Reference

- 1. Gong L, Sun X, Qu J, Wang L, Zhang M, Zhang H, et al. Loteprednol etabonate suspension 0.2% administered QID compared with olopatadine solution administered BID 0.1% in the of seasonal allergic treatment multicenter, conjunctivitis: A randomized, investigator-masked, parallel group study in Chinese patients. Clin Ther 2012; 34:1259-1272.e1.
- 2. Chigbu DI, Coyne AM. Update and clinical utility of Alcaftadine ophthalmic solution 0.25% in the treatment of allergic conjunctivitis. Clin Ophthalmol 2015; 9:1215-25.
- 3. Ackerman S, D'Ambrosio F, Greiner JV, Villanueva L, Ciolino JB, Hollander DA. A multicenter evaluation of the efficacy and duration of action of Alcaftadine 0.25% and olopatadine 0.2% in the conjunctival allergen challenge model. J Asthma Allergy 2013; 6:43-52.
- 4. Friedlaender MH, Okumoto M, Kelley J. Diagnosis of allergic conjunctivitis. Arch Ophthalmol 1984; 102:1198-9.
- 5. Leonardi S, del Giudice Miraglia M, La Rosa M, Bellanti JA. Atopic disease, immune system, and the environment. Allergy Asthma Proc 2007; 28:410-7.
- 6. Bielory L, Frohman L. Allergic and immunologic disorders of the eye. J Allergy Clin Immunol 1992; 86:1-20.
- 7. Leonardi A, De Dominicis C, Motterle L. Immunopathogenesis of ocular allergy: A schematic approach to different clinical entities. Curr Opin Allergy Clin Immunol 2007; 7:429-35.
- 8. Leonardi A. The central role of conjunctival mast cells in the

- pathogenesis of ocular allergy. Curr Allergy Asthma Rep 2002; 2:325-31.
- 9. Leonardi A, Secchi AG. Vernal keratoconjunctivitis. Int Ophthalmol Clin 2003; 43:41-58.
- 10. Bonini S, Coassin M, Aronni S, Lambiase A. Vernal keratoconjunctivitis. Eye (Lond) 2004; 18:345-51.
- 11. Bonini S. Atopic keratoconjunctivitis. Allergy 2004; 59:71-3.
- 12. Stokes TC, Feinberg G. Rapid onset of action of levocabastine eye-drops in histamine-induced conjunctivitis. Clin Exp Allergy 1993; 23:791-4.
- 13. Donshik PC, Pearlman D, Pinnas J, Raizman MB, Tauber J, Tinkelman D, et al. Efficacy and safety of ketorolac tromethamine 0.5% and levocabastine 0.05%: A multicenter comparison in patients with seasonal allergic conjunctivitis. Adv Ther 2000; 17:94-102.
- 14. Dell SJ, Shulman DG, Lowry GM, Howes J. A controlled evaluation of the efficacy and safety of loteprednol etabonate in the prophylactic treatment of seasonal allergic conjunctivitis. Loteprednol Allergic Conjunctivitis Study Group. Am J Ophthalmol 1997; 123:791-7.
- 15. Dell SJ, Lowry GM, Northcutt JA, Howes J, Novack GD, Hart K. A randomized, double-masked, placebo-controlled parallel study of 0.2% loteprednol etabonate in patients with seasonal allergic conjunctivitis. J Allergy Clin Immunol 1998; 102:251-5.
- 16. Mishra GP, Tamboli V, Jawla J, Mitra AK. Recent patents and emerging therapeutics in the treatment of allergic conjunctivitis. Recent Pat Inflamm Allergy Drug Discov 2011; 5:26-36.
- 17. Dudeja L, Janakiraman A, Dudeja I, Sane K, Babu M. Observer-masked trial

comparing efficacy of topical olopatadine (0.1%), bepotastine (1.5%), and Alcaftadine (0.25%) in mild to moderate allergic conjunctivitis. Indian J Ophthalmol 2019; 67:1400-4.

ISSN: 0975-1556

- 18. Mishra GP, Tamboli V, Jawla J, Mitra AK. Recent patents and emerging therapeutics in the treatment of allergic conjunctivitis. Recent Pat Inflamm Allergy Drug Discov 2011; 5:26-36.
- 19. Donshik PC, Pearlman D, Pinnas J, Raizman MB, Tauber J, Tinkelman D, et al. Efficacy and safety of ketorolac tromethamine 0.5% and levocabastine 0.05%: A multicenter comparison in patients with seasonal allergic conjunctivitis. Adv Ther 2000;17: 94-102.
- 20. Ackerman S, D'Ambrosio F, Greiner JV, Villanueva L, Ciolino JB, Hollander DA. A multicenter evaluation of the efficacy and duration of action of Alcaftadine 0.25% and olopatadine 0.2% in the conjunctival allergen challenge model. J Asthma Allergy 2013; 6:43-52.
- 21. McLaurin EB, Marisco NP, Ackerman Ciolono JB, Williams SL. Villanueva L, et al. Ocular itch relief with Alcaftadine 0.25% versus olopatadine 0.2% in allergic conjunctivitis: Pooled analysis of two multicenter randomized clinical trials. Adv Ther 2014: 31:1059-71.
- 22. McCabe CF, McCabe SE. Comparative efficacy of Bepotastine besilate 1.5% ophthalmic solution versus Olopatadine hydrochloride 0.2% ophthalmic solution evaluated by patient preference. Clin Ophthalmol 2012; 6:1731-8.
- 23. Ono SJ, Lane K. Comparison of effects of Alcaftadine and olopatadine on conjunctival epithelium and eosinophil recruitment in a murine model of allergic conjunctivitis. Drug Des Devel Ther 2011; 5:77-84