International Journal of Pharmaceutical and Clinical Research 2021; 13(4);403-408

Original Research Article

Post-Dural Puncture Headache (PDPH) After Cesarean Delivery Under Spinal Anesthesia: Prevalence and Risk Factor

Ram Nath Das¹, Deepak Kumar², Pramod Kumar Sinha³

¹Assistant Professor, Department of Anaesthesiology, Anugrah Narayan Magadh Medical College and Hospital, Gaya, Bihar, India

²Assistant Professor, Department of Anaesthesiology, Anugrah Narayan Magadh Medical College and Hospital, Gaya, Bihar, India.

³Associate Professor and HOD, Department of Anaesthesiology, Anugrah Narayan Magadh Medical College and Hospital, Gaya, Bihar, India

Received: 07-06-2021 / Revised: 10-07-2021 / Accepted: 16-08-2021 Corresponding author: Dr. Deepak Kumar Conflict of interest: Nil

Abstract

Aim: Assessment of the prevalence and associated risk factors of post dural puncture headache (PDPH) after cesarean section delivery under spinal anesthesia

Methods: This Cross Sectional study conducted in the Department of Anaesthesiology, Anugrah Narayan Magadh Medical College and Hospital, Gaya, Bihar, India, for 13 months. The entire procedures were performed at sitting position. The backside of the patients was cleaned with Iodine and alcohol. Spinal anaesthesia was done using a midline approach at the L2-3 or L3-4 interspaces by using different size of spinal needles and 0.5 % isobaric bupivacaine 2.5-3.0ml was injected.

Results: The 100 Patients were included in this study with fulfilling the criteria. 8 patients had a previous history of spinal anesthesia exposure and 3 of them complained a PDPH like headache after the procedure. All patients had given spinal anesthesia on sitting position. 21 G needle is the most frequently used spinal needle which is 45% of total patients whereas 20 G is used as 3%. There were 1 case (1%) diagnosed as failed block which were converted to general anesthesia. Hosmer-Lemeshow test of goodness of fit was performed to check the appropriateness of the model for analysis. Variables found to be significant at a binary logistic regression were needle size and number of attempts were found to be significant at p-value<0.05. Size of the needle used to administer spinal anesthesia is significantly associated with the development of PDPH. In this study PDPH was present in 43 patients (43%).

Conclusion: In conclusion, the prevalence of PDPH was higher, 43% compared with most other studies.

Keywords: PDPH, Cesarean Section, Spinal Anesthesia.

This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction:

Spinal anesthesia, also known as subarachnoid block, is a common type of

regional anesthesia that involves the injection of an anesthetic agent into the

subarachnoid space[1]. It was first performed accidentally by Corning in 1885[2]. Since then, it has been widely used, especially in obstetric patients undergoing cesarean delivery. However, despite its widespread use, the procedure is still associated with several complications[1]; the most recognized is postdural puncture headache (PDPH)[3].

PDPH, also known as post spinal puncture headache, is an unpleasant complication that can develop after spinal anesthesia. Its incidence ranges between $\Box 2\%$ and 40%according to the needle type and size[4]. PDPH usually occurs within 1-2 days after dural puncture, and the majority of patients respond to simple analgesia such as paracetamol, caffeine, bed rest, and good hydration maintenance. If the complication persists, an epidural blood patch should be administered. PDPH usually lasts between 5 and 7 days and is characterized by severe frontal or occipital headache that increases with sudden movement, getting up from supine position, coughing, and straining. In severe cases, there may be vision and hearing alterations as a result of traction on cranial nerves[5]. Several risk factors have been attributed to PDPH including age, weight, needle size and design, and number of puncture attempts[5,6]. For example, it has been reported that there is an inverse relationship between the incidence of PDPH and both age and weight[5]. In addition, needle size and design appear to play a crucial role in the incidence of PDPH[4-6]. Reducing the size of the spinal needle has been shown to significantly reduce the prevalence of PDPH[4,5].

Material and methods

This Cross-Sectional study conducted in the Department of Anaesthesiology, Anugrah Narayan Magadh Medical College and Hospital, Gaya, Bihar, India, for 13 months, after taking the approval of the protocol review committee and institutional ethics committee. All consecutive cesarean section patients at postoperative period were included by fulfilling the inclusion criteria of ASA status I - II patients after Cesarean Section were done upon spinal anesthesia. There were cases rejected as exclusion criteria of Uncooperative patients, Patients with impaired cognitive ability and Patients with eclampsia. Independent variables are age, body mass index (BMI), and American society of Anesthesiologist (ASA), needle size, needle design, position, and number of attempts and previous history of PDPH. Total 100 patients were included in this study.

The entire procedures were performed at sitting position. The backside of the patients was cleaned with Iodine and alcohol. Spinal anaesthesia was done using a midline approach at the L2-3 or L3-4 interspaces by using different size of spinal needles and 0.5 % isobaric bupivacaine 2.5-3.0ml was injected. The intra operative information could be collected by one of the data collectors from each patient chart. Patients were interviewed by another data collector on day 1, 2, 3 and were questioned as regard to headache, location, character, and duration, associated symptoms like neck stiffness, tinnitus, hypoacusia (partial loss of hearing), photophobia, and nausea. PDPH was diagnosed as fulfilling the following criteria. These are headache develops within 3 days after dural puncture, headache that worsens within 15 minutes after sitting or standing and improves within 15 minutes after lying down, and with at least one of the following symptoms: neck stiffness, tinnitus, hypoacusia, photophobia and nausea were included.

Data analysis

Data were analyzed in SPSS version 20 by using bi-variant and multi-variant logistic regression. Odds ratio with 95% confidence interval and p-value were computed to determine the strength of the association. A p-value <0.05 was considered as statistically significant.

Results

The 100 Patients were included in this study with fulfilling the criteria. The mean age of patients participated in study was 28.24 years old with a standard deviation of 4.23 years old and 18 years old is the minimum age of patients participated in this study, whereas 44 years old is the maximum age. All patients were either ASA I or ASA II. (Table 1)

Table 1: Demographic profile of the patients				
Variable	Frequency: n (%)			
Age in years				
18 - 30	77 (77%)			
31 - 45	23(23%)			
BMI				
< 18.5 (underweight)	3(3%)			
18.5 – 24.9 (normal)	88 (88%)			
>24.9 (overweight)	9 (9%)			
ASA status				
ASA I	90(90%)			
ASAII	10(10%)			

8 patients had a previous history of spinal anesthesia exposure and 3 of them complained a PDPH like headache after the procedure. All patients had given spinal anesthesia on sitting position. 21 G needle is the most frequently used spinal needle which is 45% of total patients whereas 20 G is used as 3%. There were 1 case (1%) diagnosed as failed block which were converted to general anesthesia. None of patients developed PDPH (Table 2).

Table 2: Spinal anesthesia				
Variables	Frequency: n (%)			
Previous spinal anesthesia				
Yes	8(8%)			
No	92(92%)			
Previous history of PDPH				
Yes	2(2%)			
No	98(98)			
Position of spinal anesthesia de	one			
Sitting	100(100%)			
Lateral	0(0%)			
Number of attempts				
Single attempts	79(79%)			
Twice attempts	16(16%)			
>2 attempts	5(5%)			
Size of spinal needle				
20 Gauge	3(3%)			
21 Gauge	45(45%)			
22 Gauge	31(31%)			
23 Gauge	6(6%)			
24 Gauge	8(8%)			

Table 2: Spinal anesthesia

25 Gauge	7(7%)
A successful block	
Yes	99(99%)
No	1(1%)
Associated symptoms	
Neck stiffness	37(37%)
Tinnitus	2(2%)
Hyper accusia	1(1%)
Photophobia	2(2%)
Nausea	18(18%)
None	40(40%)

Hosmer-Lemeshow test of goodness of fit was performed to check the appropriateness of the model for analysis. Variables found to be significant at a binary logistic regression were needle size and number of attempts. After analysis with multivariate logistic regression needle size and number of attempts were found to be significant at p-value<0.05 (Table 3). Size of the needle used to administer spinal anesthesia is significantly associated with the development of PDPH. Patients received spinal anesthesia using bigger spinal needles were more than eight times more likely to develop PDPH than patients who received spinal anesthesia using smaller needles. Another significant association was found between number of attempts and PDPH. Patients who received spinal anesthesia (SA) with multiple attempts were four times likely to develop PDPH than their counter part patients who had a single attempt.

Table 3: Factors associated with PDPH

Variables		PDPH			P –
		Yes	No	AOR (95% CI)	value
Spinal needles	Big needles (20 G ,21 G & 22 G)	40	39	8.1 (0.05-0.41)	
	Small needles (23 G,24 G,25 G)	3	18	1	0
Attempt	multiple	5	16	4.64 (0.57-38.11)	
	Single	9	70	1	0.017

In this study PDPH was present in 43 patients (43%).

Discussion

Post dural puncture headache (PDPH) has been believed to be a major problem of patients after spinal anesthesia. The overall postdural puncture headache in this study was 42.6% which is comparable to Egypt study[10], but excessively higher than other studies report[7-10].

The high percentage of prevalence of PDPH in this study might be related with the most 79 % of participants were received spinal anesthesia's using big spinal needle. Specifically, the contribution of big needle was strongly significant association for the over all of PDPH as compared with small

needles. This higher PDPH percentage after spinal anesthesia by using big needles were 8.1 times more likely to develop PDPH than small needles (AOR= 8.1; 95% CI: 0.05, 0.41; p = 0.0001). This might be linked with larger needles put down wider opening on the dura which allowed more CSF pour out than smaller hole caused by smaller needles. Our finding is in line with different studies[11-14]. However, we couldn't see the associations to the outcome variable on type of design of needle, because of all were Quincke type.

The other significant association was found linking the number of attempts and the

development of PDPH. The spinal anesthesia was successful at first attempts with 79% which is less likely to develop PDPH than those patients who have repeated attempts. In addition, patients who had an attempt of more than once are about 4.5 times at risk to develop PDPH than those patients who had a single attempt (AOR=4.64; 95% CI: 0.57. 38.11: p=0.015). This could be correlated with the number of attempts to increase the probability of piercing the dura matter repeatedly will increase the volume of CSF leak, thus increasing the probability of development of intracranial hypotension & PDPH. This finding is aligned with other studies.¹³ The proportion of repeated attempts of spinal needles related PDPH reports from a population based study in University of Basel, Switzerland (4.2 %)[15] was somehow lower than our report (15%). However, some other studies significant couldn't come across association between the number of attempts and PDPH[16,17]. Even though different studies showed on variables of the lower BMI, younger age, and previous history of PDPH are listed as risk factors for PDPH development[12,18], our observation study did not bring into being significant association between these variables and PDPH. This might be due to the lack of sample size to compare lower to higher BMI, young to old age, and patients with versus without previous history of PDPH. There are some limitations in our study.

Conclusion

In conclusion, the prevalence of PDPH was higher, 43% compared with most other studies.

References

- 1. Rodgers A, Walker N, Schug S, et al. Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results of overview of randomised trials. BMJ. 2000;321(7275):1493.
- Corning JL. Spinal anesthesia and local medication of the cord. N Y Med J. 1885; 42:483–485.

- 3. Kuczkowski KM. Post-dural puncture headache in the obstetric patient: an old problem. New solutions. Minerva Anestesiol. 2004;70(12):823–830.
- 4. Turnbull DK, Shepherd DB. Post-dural puncture headache: pathogen- esis, prevention and treatment. Br J Anaesth. 2003;91(5):718–729.
- Jabbari A, Alijanpour E, Mir M, Bani Hashem N, Rabiea SM, Rupani MA. Post spinal puncture headache, an old problem and new concepts: review of articles about predisposing factors. Caspian J Intern Med. 2013;4(1):595– 602.
- Vallejo MC, Mandell GL, Sabo DP, Ramanathan S. Postdural puncture headache: a randomized comparison of five spinal needles in obstetric patients. Anesth Analg. 2000;91(4):916–920
- Amorim JA, Gomes de Barros MV, Valença MM. Post-dural (post- lumbar) puncture headache: risk factors and clinical features. Cephalalgia. 2012;32(12):916–923.
- Hassan Mohamed Ali, Mohamed Yehya Mohamedb, Yahya Mohamed Ahmedb. Postdural puncture headache after spinal anesthesia in cesarean section: Experience in six months in 2736 patients in Kasr El aini teaching hospital – Cairo University. Egyptian Journal of Anaesthesia. 2014;30(4):383–386.
- Douglas MJ, Ward ME, Campbell DC, et al. Factors involved in the incidence of post-dural puncture headache with the 25 gauge Whitacre needle for obstetric anesthesia. Int J Obstet Anesth. 1997;6(4):220–223.
- Richman JM, Joe EM, Cohen SR, et al. Bevel direction and postdural puncture headache: a meta-analysis. Neurologist. 2006;12(4):224–228.
- Frank RL. Lumbar puncture and postdural puncture headaches: implications for the emergency physician. J Emerg Med. 2008;35(2):149–157.
- 12. Amorim JA, Valença MM. Postdural puncture headache is a risk factor for

new postdural puncture headache. Cephalalgia. 2008;28(1):5–8.

- 13. Kuczkowski KM. Post-dural puncture headache in the obstetric patient: an old problem. New solutions. Minerva Anestesiol. 2004;70(12):823–830.
- 14. Bezov D, Ashina S, Lipton R. Postdural puncture headache: Part II– prevention, management, and prognosis. Headache. 2010;50(9):1482–1498.
- Seeberger MD, Kaufmann M, Staender S, et al. Repeated Dural Punctures Increase the Incidence of Postdural Puncture Headache. Anesth Analg. 1996;82(2):302–305.

- 16. Jeanjean P, Montpellier D, Carnec J, et al. Headaches after spinal anesthesia: prospective multicenter study of a young adult population. Ann Fr Anesth Reanim. 1996;16(4):350–353.
- 17. Imarengiaye C, Ekwere I. Postdural puncture headache: a cross-sectional study of incidence and severity in a new obstetric anaesthesia unit. Afr J Med Med Sci. 2006;35(1):47–51.
- de Almeida SM, Shumaker SD, LeBlanc SK, et al. Incidence of Post-Dural Puncture Headache in Research Volunteers.Headache.2011;51(10):150 3-1510.