ISSN: 0975-1556

Available online on www.ijpcr.com

International Journal of Pharmaceutical and Clinical Research 2021; 13(5); 418-426

Original Research Article

Prospective Analytical Study to Correlate Duration of Diabetes Mellitus, Microalbuminuria, Hyperlipidemia with Severity if Diabetic Retinopathy

Umesh Kumar¹, Nawin Kumar²

¹Senior Resident, Department of Ophthalmology, DMCH, Laheriasarai, Darbhanga, Bihar, India

²Associate Professor, Department of Ophthalmology, DMCH, Laheriasarai, Darbhanga, Bihar, India

Received: 10-08-2021 / Revised: 07-09-2021 / Accepted: 28-09-2021

Corresponding author: Dr. Nawin Kumar

Conflict of interest: Nil

Abstract

Aim: The aim of this study to evaluate the correlation of duration of diabetes mellitus, microalbuminuria, hyperlipidemia with severity if diabetic retinopathy.

Methods: The prospective analytical study, which was carried in the Department of Ophthalmology, DMCH, Laheriasarai, Darbhanga, Bihar, India for 12 months. Total 220 patients were included in this study. For the study, type II DM is defined as a fasting plasma glucose of more than or equal to 126 mg/dl or 2-hour post glucose load plasma glucose of more than or equal to 200 mg/dl or a random plasma glucose of more than or equal to 200 mg/dl in the presence of symptoms of hyperglycemia. All the biochemical assessments were done using an Auto analyzer.

Results: A total of 220 subjects of either gender were included in our study, out of which 120 (54.55%) were females and rest were males 100; 45.45%). The male to female ratio was 1.2:1. Majority of the patients lied in the age group of 40-60 years (54.55%) followed by 60-80 years (28.64%) and below 40 years (15.45%), while only 3(1.36%) patients were aged above 80 years. On ophthalmologic examination we found that only 112 out of 220 diabetics suffered from diabetic retinopathy and the rest 108(49.09%) did not show any signs of diabetic changes in the fundus. Out of 112 patients in the retinopathic group, 57 (25.91%) of them suffered from very mild to moderate NPDR, 32 (14.55%) patients showed signs of severe to very severe NPDR and only 23 (10.45%) had proliferative diabetic retinopathy.

On doing a trivariate analysis between severity of retinopathy, microalbuminuria and serum cholesterol levels, it was observed that in microalbuminuria grade 0, difference in prevalence of retinopathy in patients with different serum cholesterol levels was not found to be statistically significant (p = 0.62). In microalbuminuria grade 1, prevalence of retinopathy in patients having desirable cholesterol levels was lower as compared to those having borderline or high cholesterol levels and this difference was found to be statistically significant (p = 0.06). In microalbuminuria grade II, proportional differences in grades of retinopathy and serum cholesterol levels were observed and these differences were found to be statistically significant (p = 0.021). In microalbuminuria grade III. majority of patients were suffering from very mild-moderate retinopathy and no statistically significant association between retinopathy and serum cholesterol levels was found (p = 0.63). Multivariate analysis revealed a statistically significant association of Diabetic retinopathy with HbA1c values. High grade Microalbuminuria (Grade II and III Duration of diabetes >20 years). Association between retinopathy and high total cholesterol levels (Borderline high and high) was not found (p = 0.23).

Conclusion: Duration of diabetes and microalbuminuria have been found to be the independent risk factors for diabetic retinopathy, but serum cholesterol levels did not show an independent role in our study. The findings in present study endorsed the view that microalbuminuria poses a risk for diabetic retinopathy which is affected by duration of diabetes, level of glycemic control and lipid levels.

Keywords: Diabetes Mellitus; Diabetic Retinopathy; Microalbuminuria; Hyperlipidaemia.

This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction:

Type 2 diabetes constitutes about 85 to 95% of all diabetics in high income countries[1] and accounts for an even higher percentage in low- and middleincome countries. Type 2 diabetes is now a common and serious global health problem, which, for most countries, has evolved in association with rapid cultural and social changes, ageing populations, increasing urbanisation, dietary changes, reduced physical activity and other unhealthy lifestyle and behavioural patterns[1]. Diabetic retinopathy is the most common microvascular complication of diabetes[2]. The risk of developing diabetic retinopathy or other microvascular complications of diabetes depends on both the duration and severity of hyperglycemia.

Most patients with type I diabetes develop evidence of retinopathy within 20 years of diagnosis[3]. Retinopathy may develop as early as 7 years before diagnosis of diabetes in patients with type 2 diabetes[2] Prolonged hyperglycemia reactions promotes glucose with components of the artery wall, resulting in an increase in glycation end products[4]. These products are cross-linked with collagen, which increases the stiffness of the arteries supporting atherosclerosis in the presence of high density lipoproteins (LDL) and cholesterol. In this way, high blood sugar leads to endothelial damage that occurs as microvascular or macrovascular damage. A diabetic patient is sensitive to many complications that cause morbidity and early mortality. Diabetic complications

pose a huge burden to healthcare, as poor glycemic control in diabetic patients is also directly related to increased overall healthcare costs. The microvascular disease also has a significant impact on the lives of diabetic patients. Π Diabetic retinopathy is the most serious of the various complications of diabetes [5,6]. The incidence of diabetic retinopathy is 21% to 60%, respectively, in people with diabetes below five years and at least 15 years. Proliferative retinopathy ranges from 1.2% to 67% in people with diabetes for less than a decade and for 35 or more years. The incidence of blindness was 16% in patients with DM. Retinopathy after ten years of diabetes is associated with hemoglobin glycine and proteinuria, increase diastolic pressure and infertility in males[7]. Renal diseases linked with type II diabetes mellitus is the major cause of endstage renal disease in the world. In the USA, the incidence of renal diseases linked with diabetes mellitus has augmented by 150% over the last ten years. The 1st clinical indication of renal dysfunction in diabetic patients is usually microalbuminuria, which progresses between two to five percent annually[8,9]. Microalbuminuria rarely reversible in type II diabetes, but in its place, 20 to 40 percent of patients exceed proteinuria. In 10 to 50 percent of CKD patients and proteinuria finally need transplantation or dialysis. 40 to 50 percent of diabetic patients with microalbuminuria sooner or later die of cardiovascular anomalies; this ratio is 3 times greater from cardiac causes, with diabetes, but without

ISSN: 0975-1556

signs of renal disease. In cases of renal disease and diabetes mellitus, decreasing blood pressure and reduced albumin in urine are operative in declining the risk of myocardial infarction, end-stage renal disease, stroke heart and Angiotensin II antagonists and ACE inhibitors supposed to be the utmost beneficial antihypertensive agents. Calcium blockers other channel dihydropyridine also reduce urine albumin and the advancement of kidney disease, and the grouping of calcium channel blockers and dihydropyridine other than ACE inhibitor treatment is even more effective[10].

Material and methods

The prospective analytical study, which was carried in the Department of Ophthalmology, DMCH, Laheriasarai, Darbhanga, Bihar, India for 12 months, after taking the approval of the protocol review committee and institutional ethics committee.

Total 220 patients were included in this study. For the study, type II DM is defined as a fasting plasma glucose of more than or equal to 126 mg/dl or 2-hour post glucose load plasma glucose of more than or equal to 200 mg/dl or a random plasma glucose of more than or equal to 200 mg/dl in the presence of symptoms of hyperglycemia. All the Patients with acute or chronic renal failure, Opaque/hazy ocular fundus visualization, preventing existing ocular disorders likely to mask the findings of diabetic retinopathy, Patients with presence of any of the confounding factors, like fever, active systemic infections, exercise, high protein intake, accelerated hypertension, congestive heart failure, patients not willing to participate in the study were excluded from the study.

Thorough ocular evaluation was done on all selected patients both clinically as well as with the help of diagnostic instruments. Both Uncorrected and best corrected visual acuity was recorded using a Snellen's chart.

Anterior segment evaluation was done using slit lamp examination to look for any other ocular disease or ocular surgery. Amsler Grid Examination was also performed. The intraocular pressure was measured using an applanation tonometer.

ISSN: 0975-1556

Fundus examination was performed by Direct Ophthalmoscopy, Indirect Ophthalmoscopy and +90D lenses. Optical coherence tomography was performed using Cirrus 500 machine manufactured by Carl-Zeiss, Germany to measure the macular thickness, and Fundus Fluorescein Angiography by using Carl Zeiss fundus camera. Diabetic retinopathy was graded as per the ETDRS guidelines.

The biochemical evaluation was done by obtaining 2 ml of blood sample from the patient in a sterile vial and sent to the Department of Biochemistry. All the biochemical assessments were done using an Auto analyzer. All the patients were advised to undergo biochemical investigations for Blood sugar (fasting/pp), HbA1c taken as HbA1c: Good Control: = 7.0%: grade1, Fair control: 7.1-8.5%: grade 2; poor control: > 8.5%: grade3 [11]. Urinary albumin to creatinine ratio in a random spot collection of urine and Lipid profile.

For purpose of this study the microalbuminuria was further sub graded as-Grade 0: < 2.5mg/mmol; Grade I: 2.5-12.5mg/mmol; Grade II: 25mg/mmol and Grade III: > 25mg/mmol for men and Grade 0: < 3.5mg/mmol; Grade I: 3.5-12.5mg/mmol; Grade II: > 12.5-25mg/mmol and Grade III: > 25mg/mmol for women[12].

Lipid profile was also sub graded as-Desirable (< 200); Border line high (200-239); High (≥ 240)[13].

The data was analyzed using SPSS software version 20. Categorical data chi-square test was used whereas continuous data was analyzed using ANOVA and student "t-test". Multivariate assessment was done using logistic regression. The confidence

level of the study was kept at 95% and hence a "p" value of less than 0.05 indicated a statically significant association.

Results

A total of 220 subjects of either gender were included in our study, out of which 120 (54.55%) were females and rest were males 100; 45.45%). The male to female ratio was 1.2:1. Majority of the patients lied in the age group of 40-60 years (54.55%) followed by 60-80 years (28.64%) and below 40 years (15.45%), while only 3(1.36%) patients were aged above 80 years (Table 1).

On ophthalmologic examination we found that only 112 out of 220 diabetics suffered from diabetic retinopathy and the rest 108(49.09%) did not show any signs of

diabetic changes in the fundus. Out of 112 patients in the retinopathic group, 57 (25.91%) of them suffered from very mild to moderate NPDR, 32 (14.55%) patients showed signs of severe to very severe NPDR and only 23 (10.45%) had proliferative diabetic retinopathy.

ISSN: 0975-1556

A statistically significant association with severity of retinopathy and the age of the patients was observed. None of the 3 patients aged above 80 was suffering from retinopathy. Proportion of Group I (No retinopathy) was higher in younger patients i.e. below 40 (68.57%) and 40-60 (48.31%) as compared to elderly cases i.e. 60-80 (37.5%) and this difference was found to be statistically significant (p < 0.001).

Table 1 Sex and Age distribution.

Parameter	No. of Cases	Percentage					
Gender							
Male	100	45.45					
Female	120	54.55					
Age group (years)							
Below 40	34	15.45					
40-60	120	54.55					
60-80	63	28.64					
Above 80	3	1.36					

Another statistically significant association was found between the severity of retinopathy and duration of diabetes (p < 0.001). It was found that proportion of Group I (non-retinopathy) patients was higher in patients with duration of diabetes < 10 years (67.78%) as compared to patients with duration 10-20 years (52%), 20-40 years (8.57%) and > 40 years (25%). Majority of patients with duration of diabetes 20-40 years and > 40 years belonged to Group IIA. (Very mild to

moderate retinopathy). Majority of patients (85%) of Grade 0 microalbuminuria (< 2.5 mg/mmol) had no Retinopathy. It was found that higher the level microalbuminuria more is the severity of retinopathy. Proportion of Severe to very retinopathy and proliferative severe diabetic retinopathy were higher in higher grade of microalbuminuria (Grade II and Grade III). A statistically significant microalbuminuria association between grade and severity of retinopathy was observed (p < 0.001) (Table 2).

Table 2: Correlation of Retinopathy and Microalbuminuria

Micro- Albuminuria Grade	_	o I (No opathy) B)	` _		Group IIB (Severe To Very Severe) (n=32)		Group IIC (Proliferative Diabetic Retinopathy) (n=23)	
	No.	%	No.	%	No.	%	No.	%
Grade 0(n=80)	68	85	10	12.5	2	2.5	0	0
Grade I(n=70) (2.5-12.5 mg/mmol)	35	50	27	38.57	8	11.43	0	0
Grade II (n=45) (>12.5-25 mg/mmol)	5	11.11	19	42.22	10	22.22	11	14.44
Grade III (n=25) (>25 mg/mmol)	0	0	1	4	12	48	12	48

Out Of 220 patients of diabetes, total cholesterol was found to be desirable (< 200 mg/dl) in only 70 (31.82%) patients. Out of these 70 patients with desirable cholesterol majority (60%) had no retinopathy (Group I), 21.43% had very mild to moderate retinopathy (Group IIA), 12.86% had severe to very severe retinopathy (Group IIB) and 5.71% had proliferative diabetic retinopathy (Group IC). A total of 117 (53.18%) patients had borderline total cholesterol level and of these 117 patients. 55 (47 %) had no retinopathy (Group I). 31 (26.49%) had very mild to moderate retinopathy (Group IIA). 17 (14.53%) had severe to very severe retinopathy and 14 (11.97%) had proliferative retinopathy. Total cholesterol was found to be high (240 mg/dl) in 33 (15%) patients. Prevalence of retinopathy was 60%, in patients having high total cholesterol levels. Proportional difference in severity of retinopathy in patients with different total cholesterol levels was found to be statistically significant (p = 0.001). On doing a trivariate analysis between severity of retinopathy, microalbuminuria and serum cholesterol levels. was observed that microalbuminuria grade 0, difference in prevalence of retinopathy in patients with different serum cholesterol levels was not found to be statistically significant (p = 0.62). In microalbuminuria grade l,

prevalence of retinopathy in patients having desirable cholesterol levels was lower as compared to those having borderline or high cholesterol levels and this difference was found to be statistically significant (p = 006). In microalbuminuria grade proportional differences in grades of retinopathy and serum cholesterol levels were observed and these differences were found to be statistically significant (p = 0.021). In microalbuminuria grade Ill. majority of patients were suffering from very mild-moderate retinopathy and no statistically significant association between retinopathy and serum cholesterol levels was found (p = 0.63). Multivariate analysis revealed statistically significant association of Diabetic retinopathy with grade values.High HbA1c Microalbuminuria (Grade and III II diabetes >20 Duration of years). Association between retinopathy and high total cholesterol levels (Borderline high and high) was not found (p = 0.23).

ISSN: 0975-1556

Discussion

Diabetes has become a global epidemic affecting children, adolescents, and adults. According to the World Health Organization, approximately 150 million people worldwide currently have type 2 DM (formerly called adult- onset diabetes): The number of people with type 2 DM is

estimated to double by 2030[14]. Diabetes is a disease that is strongly associated with both microvascular and macrovascular complications, including retinopathy, nephropathy neuropathy and (microvascular) and ischemic heart disease, peripheral vascular disease. cerebrovascular disease (macrovascular), resulting in organ and tissue damage in approximately one third to one half of people with diabetes Among different microvascular complications, diabetic retinopathy is the most common[15].

Microalbuminuria is a nephrotic disorder which if remains untreated progresses to proteinuria and overt diabetic nephropathy. It has been reported that as many as 7% of patients with type 2 diabetes already have microalbuminuria at the time they are diagnosed with diabetes[16]. Thus, microalbuminuria is a microvascular complication that is often accompanied with the diagnosis of type 2 diabetes and in effect may have a crucial role in determining the future course of disease and per se complications associated with it.

A total of 220 subjects of either gender were included in our study, out of which 120 (54.55%) were females and rest were males 100; 45.45%). The male to female ratio was 1.2:1. Majority of the patients lied in the age group of 40-60 years (54.55%) followed by 60-80 years (28.64%) and below 40 years (15.45%), while only 3(1.36%) patients were aged above 80 years[17]. Contrary to the profile of patients in present series, Chung et al.[18] (2011) had majority of male patients (54%) with a mean age of 64.9 ± 10.8 years in the study population, thus, showing the patients in their series to be older than in present study. Similarly a study done on Indian population by us in 2016 showed that prevalence of diabetic retinopathy is significantly higher in men (68.5%) than in women and in those who were 50-70 years of age (75.5%)[19]. Manaviat et al[20] (2004) had majority of females (58.64%) and mean age of patients comparable to that in present study (54.9

+/- 10.2 years). He et al[21] (2012) had majority of male patients (57%) with mean age of 59.69+/-12.28 years. These findings indicate that gender and age of patients with diabetes and microalbuminuria might vary and is a study characteristic rather than being a population characteristic.

ISSN: 0975-1556

Fundus examination findings positive for retinopathy were observed in 198 (44.59%) cases. Thus, prevalence of diabetic retinopathy in type II diabetic cases with microalbuminuria as observed in present study was 44.59%[17].

In the present study, out of 112 patients in the retinopathic group, 57 (25.91%) of them suffered from very mild to moderate NPDR, 32 (14.55%) patients showed signs of severe to very severe NPDR and only 23 (10.45%)had proliferative diabetic retinopathy. In different cross- Sectional studies, prevalence of different grades of retinopathy have been shown to be of similar order with prevalence of lower grades of retinopathy being higher as compared to higher grades or proliferative retinopathy[15,17,22-25].

Retinopathy, a progressive disorder, assumes greater severity if remains undiagnosed and untreated[26,27] hence late stages (i.e. severe to very severe NPDR and proliferative diabetic retinopathy) are diagnosed at advanced stages of diabetes. The findings in most of the studies[22-25] support the rate of proliferative diabetic retinopathy to be lower as compared to non-proliferative diabetic retinopathy.

We also investigated the role of duration of diabetes on causation of diabetic retinopathy among microalbuminuria patients and found that this logical relationship was working perfectly. It was observed that in general, prevalence as well as severity of diabetic retinopathy increased significantly with increasing duration of diabetes. This finding eventually correlates well with the observations of other clinical studies[16,28-30] as well as population studies[31] which have laid emphasis that early onset of diabetes (≈ longer duration of diabetes) poses increased risk for diabetic retinopathy in general and that in patients with microalbuminuria in particular. We also conducted a study in past in which we found that albuminuria was significantly higher in our patients with diabetic retinopathy than those in without retinopathy[32]. Owing to sustained hyperglycemia in diabetic patients, longer duration of diabetes causes microvascular complications that include diabetic retinopathy. Hyperglycemia leads to no enzymatic formation of advanced glycosylated end products (AGEs). In experimental studies, AGES have been found to be associated with formation of microaneurysms and pericyte Longer duration of diabetes might have a role in promoting AGEs production and hence could result in increased risk of microvascular complications in general and diabetic retinopathy in particular.

study shows a significant Present association between total cholesterol levels and severity as well as prevalence of diabetic retinopathy (p < 0.001). Hyperlipidemia is regarded as one of the major factors responsible for diabetic retinopathy apart from hyperglycemia and hypertension[14]. A significant association between retinal hard exudate secretion and elevated serum lipid levels has also been reported[34,35]. However, some studies have rejected this relationship[36] but they are limited in number.

On multivariate analysis, we found that duration of diabetes, microalbuminuria and HbA1c levels were independent significant predictors of diabetic retinopathy, but serum cholesterol levels did not show an independent role. These findings suggest that hyperlipidemia has a limited role which is often confounded and that is the reason that in some studies, the role of lipid levels as predictor of diabetic retinopathy and its severity remains unexplained.

Conclusion

Duration of diabetes and microalbuminuria have been found to be the independent risk factors for diabetic retinopathy, but serum cholesterol levels did not show an independent role in our study. The findings in present study endorsed the view that microalbuminuria poses a risk for diabetic retinopathy which is affected by duration of diabetes, level of glycemic control and lipid levels.

ISSN: 0975-1556

Reference

- 1. World Health Organisation. Prevention of diabetes mellitus. Tech- nical Report Series of Geneva: World Health Organisation, 1994.
- 2. Fong DS, Aiello LP, FL: Diabetic Retinopathy. Diabetes care 2004; 27: 2540-2553.
- 3. UK Prospective Diabetes Study Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). Lancet 1998; 352: 837-853
- 4. Stratigou T, Vallianou N, Koutroumpi S, Vlassopoulou B, Apostolou T, Tsagarakis S, Ioannidis G. Progression of Albuminuria Among Patients with Type 1 Diabetes Mellitus: A Long Term Observational Follow-up Study. Experimental and Clinical Endocrinology & Diabetes. 2019 Feb 25.
- 5. Babaliche P, Nadpara RA, Maldar A. Association Between Estimated Glomerular Filtration Rate and Microvascular Complications in Type II Diabetes Mellitus Patients: A 1-Year Cross-Sectional Study. Journal of the National Medical Association. 2019;111(1):83-7.
- 6. Tanaka N, Yamamoto Y, Yokoyama Y, Mori T, Hanai K, Babazono T. Temporal trends in the prevalence of albuminuria and reduced eGFR in Japanese patients with type 2 diabetes. Diabetology international. 2019;10(4):279-87.

- 7. Blum J, Chaney M, Mudji J, Mfungwa JA, Rice T, Labhardt ND. Glycaemic control among patients with type 2 diabetes followed in a rural African primary care setting—A reality check in the Democratic Republic of Congo. Primary care diabetes. 2019 Aug 24.
- 8. Shahwan MJ, Gacem SA, Zaidi SK. Prevalence of diabetic nephropathy and associated risk factors among type 2 diabetes mellitus patients in Ramallah, Palestine. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2019;13(2):1491-6.
- 9. Albeltagy ES, Hammour AE, Albeltagy SA. Potential value of serum Progranulin as a biomarker for the presence and severity of micro vascular complications among Egyptian patients with type 2 diabetes mellitus. Journal of Diabetes & Metabolic Disorders. 2019;18(1):217-28.
- 10. Moriya T, Yamagishi T, Matsubara M, Ouchi M. Serial renal biopsies in normo-and microalbuminuric patients with type 2 diabetes demonstrate that loss of renal function is associated with a reduction in glomerular filtration surface secondary to mesangial expansion. Journal of Diabetes and its Complications. 2019;33(5):368-73.
- 11. American Diabetes Association (ADA).Diagnosis and Classification of Diabetes Mellitus: Position Statement.Diabetes Care 2010; 33(1): 562-569.
- 12. Rossing P, Hougaard P, ParvingH: Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic nephropathy in type 1 diabetic patients: A 10-Year prospective observational study. Diabetes Care 2002 25: 859-864.
- 13. Reddy SC, Kihn YM, Ramil A. Retinopathy in type 2 diabetic patients with microalbuminuria. Nepal J Ophthalmol. 2013 Jan; 5(9): 69-74.23584650.

14. Ciulla TA, Amador AG, Zinman B. Diabetic retinopathy and diabetic macular edema: pathophysiology, screening, and novel therapies. Diabetes Care. 2003 Sep; 26(9): 2653-64.

ISSN: 0975-1556

- 15. UK Prospective Diabetes Study Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). Lancet 1998, 352: 837-853.
- 16. Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clinical Diabetes 2008; 26(2): 77-82.
- 17. Garg P, Misra S, Yadav S, Singh L. Correlative Study of Diabetic Retinopathy with HbA1c and Microalbuminuria. Int. J. Ophthalmic Res 2018 August; 4: 282-286
- 18. Chung M-S, Lee J-J, Lee C-T, Shen F-C, Kuo H-K, Huang S-T, Chiou TT-Y, Sun C-K, Yang KD, Liu R-T. Prevalence and risk factors of Taiwanese microalbuminuric type 2 diabetic mellitus with and without diabetic retinopathy. Acta Nephrologica 2011; 25(2): 43-49.
- 19. Garg P, Ahmad L. Prevalence of various stages of Diabetic Retinopathy in patients of Diabetes Mellitus-2; Journal of Medical Science and Clinical Research. 2016 Dec; 4(12): 14903-14908.
- 20. Manaviat MR, Afkhami A, Shoja MR. Retinopathy and microalbuminuria in type II diabetic patients. BMC Ophthalmology 2004, 4: 9
- 21. Singh DK, Winocour P, Farrington K. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat Clin PractNephrol 2008; 4: 216-226
- 22. He B-B, Wei L, Gu Y-J, Han J-F, Han J-F, Li M, Liu Y-X, Bao Y-Q, Jia W-P. Factors Associated with Diabetic Retinopathy in Chinese Patients with Type 2 Diabetes Mellitus. International

Kumar et. al.

- Journal of Endocrinology Volume 2012 (2012), Article ID 157940, 8 pages.
- 23. Ichinose K, Kawasaki E., Eguchi K. Recent advancement of understanding pathogenesis of type 1 diabetes and potential relevance to diabetic nephropathy. Am J Nephrol 2007; 27: 554-564.
- 24. Singh DK, Winocour P, Farrington K. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat Clin PractNephrol 2008; 4: 216-226.
- 25. The Microalbuminuria Collaborative Study Group. Predictors of the development of microalbuminuria in patients with Type I diabetes mellitus: a seven-year prospective study. Diabet Med. 1999 Nov; 16(11): 918-25.
- 26. Wong TY, Mwamburi M, Klein R, Larsen M. Flynn H, Hernandez-Medina M, Ranganathan G, Wirostko B, Pleil A, Mitchell P. Rates of Progression in Diabetic Retinopathy During Different Time Periods: A systematic review and meta-analysis. Diabetes Care. Dec 2009; 32(12): 2307-2313.
- 27. Ellis JD, Zvandasara T, Leese G, McAlpine R, Macewen CJ, Baines PS, Crombie I, Morris AD.. Clues to duration of undiagnosed disease from retinopathy and maculopathy at diagnosis in type 2 diabetes: a cross-sectional study. Br J Ophthalmol. 2011 Sep; 95(9): 1229-33.
- 28. Singh DK, Winocour P, Farrington K. Mechanism of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat Clin Pract Nephrol 2008; 4: 216-226.
- 29. He B-B, WeiL,Gu Y-J, Han J-F, Li M, Liu Y-X, Bao Y-Q, Jia W-P. Factors Associated with Diabetic Retinopathy in Chinese Patients with Type 2 Diabetes Mellitus. International Journal of Endocrinology Volume 2012 (2012), Article ID 157940.

30. Chung M-S, Lee J-J, Lee C-T, Shen F-C, Kuo H-K, huang S-T, Chiou TT-Y,Sun C-K, YANG KD,Liu R-T.Prevalence and risk factors of Taiwanese microalbuminuric type 2 diabetic mellitus with and without diabetic retinopathy. Acta Nephrologica 2011; 25(2): 43-49.

ISSN: 0975-1556

- 31. Cruickshanks KJ, Klein,Ritter LL, Klein R, Moss SE. The association of microalbuminaria with Diabetic Retinopathy. The Wisconsin Epidemiologic Study of Diabetic Retinopathy.Ophthalmology. 1993 jun; 100(6): 862-7
- 32. Karoli R, Fatima J, Shukla V, Garg P, Ali A. Predictors of Diabetic Retinopathy in Patients with Type 2 Diabetes Who Have Normoalbuminuria. Annals of Medical and Health Sciences Research. 2013; 3(4): 536-540
- 33. Fong DS, Aiello LP, FL 3rd, Klein R: Diabetic Retinopathy. Diabetes care 2004: 27: 2540-2553.
- 34. Chew EY, Klein ML, Ferris FL 3rd, Remaley NA, Murphy RP Chantry K, Hoogwerf BJ, Miller D. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch Ophthalmol. 1996 Sept; 114(9): 1079-84
- 35. Agroiya P, Philip R, Saran S, Gutch M, Tyagi R, Gupta KK. Association of serum lipids with diabetic retinopathy in type 2 diabetes. Indian J EndocrMetab 2013; 17(Suppl S1): 335-7.
- 36. Cetin EN, Bulgu Y, Ozdemir S, Topsakal S, Akin F, Aybek H, Yildrum C. Association of serum lipid levels with diabetic retinopathy. Int. J. Ophthalmol. 2013; 6(3): 346-349.