ISSN: 0975-1556

Available online on www.ijpcr.com

International Journal of Pharmaceutical and Clinical Research 2022; 14(1);65-71

Original Research Article

An Investigation of the Functional and Anatomical Outcomes of Displaced Intraarticular Calcaneal Fractures Treated with Locking Plate Fixation: A Prospective Research

Baidyanath Kumar¹, Swati Sinha², Satyendra Kumar Sinha³

¹Senior Resident, Department of Orthopedics, Nalanda Medical College and Hospital, Patna, Bihar, India

²Assistant Professor, Department of Physiology, Vardhman Institute of Medical Science, Pawapuri, Nalanda, Bihar, India.

³Professor, Department of Orthopedics, Nalanda Medical College and Hospital, Patna, Bihar, India

Received: 09-11-2021 / Revised: 05-12-2021 / Accepted: 21-12-2021

Corresponding author: Dr. Swati Sinha

Conflict of interest: Nil

Abstract

Aim: The aim of the present study determines the Functional and anatomical outcome of displaced intraarticular fractures of calcaneum treated using locking plate fixation.

Methods: This Prospective study was done the Department of Orthopedics, Nalanda Medical College and Hospital, Patna, Bihar, India for 1 year. A total of 50 patients aged \geq 18 years, displaced intra articular fractures of calcaneum were included in this study. Post-operative management involved, immobilization using a below the knee slab for a duration of 2-3 weeks to ensure wound healing. Subsequently on the second post operative day non weight bearing mobilization was advised followed by ankle movements on removal of the slab. Complete weight bearing was recommended only after ensuring fracture union on x-ray. Follow up-Patients were followed up at an interval of 6 weeks, 3 months and 6 months post-surgery and imaging via x-ray, at each visit was done to assess the fracture healing.

Results: In our study we included 50 patients, amongst them 7 were female and the rest 43 were male. The mechanism of injury was noted to be road traffic accident in 9 patients and fracture sustained as a result of fall from a height in the rest. According to this scale, 35 patients (70%) had good outcome, 11 patients had fair outcome (22%) while 4 patient (8%) had poor outcome. 4 out of the 50 patients, was noted to have wound dehiscence where suture removal was delayed until 3 weeks and the wound healing was ensured at the end of 8 weeks. Regular dressings were done, and the wound healed with secondary intention without any further intervention. For this patient regular cultures were taken, and the antibiotics were changed accordingly. 4 patient developed superficial wound infection, for which regular dressings were done and antibiotics changed according to culture reports.

Conclusion: we concluded that the anatomic locking plate can be used effectively in the treatment of displaced intraarticular calcaneal fractures using simple reduction techniques with a potentially shortened operating time.

Keywords: Intraarticular fractures, Orthopedics, Immobilization.

This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Calcaneus fractures account for 2% of all adult fractures and are the most commonly fractured tarsal bone (60%). About 75% of these fractures are intra-articular[1,3]. These fractures result due to axial loading of the calcaneum, that is, fall from height, and therefore, many of these are bilateral or associated with pelvic or fractures[1,3]. Most calcaneum fractures are comminuted and intra-articular. Hence, these are difficult to treat. Conservative management of these fractures almost always leads to continuing disabling pain stiffness. Consequently, and operative procedures are preferred for the treatment of calcaneal fractures, including percutaneous screw fixation. reduction, and plating with reconstruction plates as well as fixation with locking anatomical plates.

Calcaneum fractures are classified into intra-articular and extra-articular fractures based on the involvement of the subtalar joint. The intra-articular fractures, based on plain radiograph, are further classified by Essex-Lopresti (1952)into depression- and tongue-type fractures. On plain radiograph, when the fracture line exits behind the posterior facet and anterior to attachment of Achilles tendon, it is called joint depression-type fracture. Tongue-type fracture is one in which there is a secondary fracture line which exits distal to Achilles tendon attachment, and the articular fragment remains attached to the tuberosity fragment[4,5]. further Α detailed descriptive classification was given by Sanders[6,7] based on axial view computed tomography (CT) scan. According to this classification, undisplaced fractures are classified as Type I. Type II is further classified into IIA, IIB, and IIC based on the location of the primary fracture line. Type III is classified into IIIAB, IIIBC, and IIIAC. Comminuted fractures are classified as Type IV.

Most of the calcaneal fractures are intraarticular and almost all occur due to an

axial load such as a fall from height. Intraarticular calcaneal fractures have significant importance as poor outcomes of treatment are associated with poor health status. Calcaneal fractures are mostly work related, as they result from a fall from height especially in males aged 35-45 years. These fractures frequently result in long term disability with potentially severe economic impact on the patient. Fractures of the calcaneus are typically the result of high-energy trauma, such as a fall from a height or a motor vehicle accident. The pattern of fracture lines and extent of comminution are determined by the position of the foot, the amount of force, and the porosity of the bone at the time of impact. Treating calcaneal fractures is a challenge for orthopaedic surgeon. A wide range of treatment options varying from non-operative to operative methods are available. Studies conducted by Batra, Makki et al, Wu et al all had results favouring open reduction and internal fixation with plate and screws[8,10]. the aim of the present study determine the Functional and anatomical outcome of displaced intraarticular fractures calcaneum treated using locking plate fixation.

ISSN: 0975-1556

Material and methods

This Prospective study was done the Department of Orthopedics, Nalanda Medical College and Hospital, Patna, Bihar, India for 1 year. 50 displaced intra articular fractures of calcaneum were included in this study. All open fractures, Heel crush injury, Pre-existing vascular injury or compromise and Patients with diabetic neuropathy and Charcot's joint were excluded from the study.

Patients subjected to surgery were followed-up at regular intervals with clinical and radiological evaluation. Assessment was done based on a performa that enlisted the following information-

• Personal details: age, sex, address and occupation.

- Classification: sanders classification.
- Range of movements achieved post operatively.
- Intra-operative and post-operative complication(s), if any.

Surgical procedure- Patient is made to lie in the lateral position on a radioluscent table. A lateral skin incision extending from calcaneal tuberosity to the calcaneocuboid joint is made. It is preferable to raise a thick skin flap to avoid skin necrosis and in some cases k-wires were placed at the proximal end of the wound, bent at an angle of 90 degrees to avoid repeated handling of the skin flap. Care was taken to preserve the sural nerve and the short saphenous vein. Fracture reduction was achieved by using k wires and the depressed fragments were elevated as needed after cleaning the lateral wall subperiosteally for access and any deficit was filled with an allograft. The fracture reduction was then confirmed with the aid of c-arm and subsequently secured using a locking plate on the lateral aspect of the calcaneum. The plate was in most cases placed below the peroneal tendons, which were retained. Post-operative management

involved, immobilization using a below the knee slab for a duration of 2-3 weeks to ensure wound healing. Subsequently on the second post operative day non weight bearing mobilization was advised followed by ankle movements on removal of the slab. Complete weight bearing was recommended only after ensuring fracture union on x-ray.

ISSN: 0975-1556

Follow up- Patients were followed up at an interval of 6 weeks, 3 months and 6 months post surgery and imaging via x-ray, at each visit was done to assess the fracture healing. Patients were followed up using American Orthopaedic foot and ankle hind foot score (AOFAS). Radiological assessment was done in terms of maintaining the Bohler's and Gissane angles, calcaneal height and anatomical articular reconstruction.

Results

In our study we included 50 patients, amongst them 7 were female and the rest 43 were male. The mechanism of injury was noted to be road traffic accident in 9 patients and fracture sustained as a result of fall from a height in the rest. The age distribution is mentioned in (Table 1).

Table 1: Age distribution of patients

Age in years	No. of patients	%
Below 30	23	46
30-40	10	20
40-50	11	22
50-60	6	12
Total	50	100

Mean \pm SD: 36.02 \pm 10.66

The fractures were classified according to sanders classification after the required CT scans were done (Table 2)

Table 2: Sander Type distribution of patients

Sander Type	No. of patients	%
1	0	0
2	15	30
3	33	66
4	2	4
Total	50	100

The surgery was not performed immediately for all patients, though most presented on the day of the injury, and it was delayed until the swelling decreased and wrinkle sign appeared (Table 3).

These patients were followed up at 6 months and the functional outcome was assessed in all patients using Ankle- Hind foot scale which includes assessment of pain, function, maximum walking distance, gait abnormality, graded difficulty in walking on different surfaces, motion, stability of ankle and alignment of ankle and foot.

Table 3: Operated Day distribution of patients

Operated Day	No. of patients	%
<10	25	50
10-15	20	40
>15	5	10
Total	50	100
Mean \pm SD: 10.91 \pm 3.45		

According to this scale, 35 patients (70%) had good outcome, 11 patients had fair outcome (22%) while 4 patients (8%) had poor outcome (Table 6).

Table 4: AOFAS score distribution of patients

AOFAS Score	No. of patients	%
<70	10	20
70-80	15	30
>80	25	50
Total	50	100
Mean \pm SD: 77.11 \pm 10.36		

Amongst the 50 patients, alignment of the foot and ankle was restored in all cases and so was the ankle hind foot stability. There was no varus or valgus angulation identified. Only 7 patients had visibly altered gait. The motion in the sagittal plane was restored to >30 degrees in 39 patients but the hind foot motion (inversioneversion) was restored to >75% in only 4 of the patients. Bony union occurred in all patients. The preoperative Bohlers angle (calcaneal height) and Gissane angle was compared with the post operative parameters at 6 months, and it was noted that in comparison with the contralateral limb there was a statistically significant alteration between the two. Clinically it was noted that in most patients the post operative parameters at 6 month follow up were within the acceptable range (Table 5). The complications we encountered were –

ISSN: 0975-1556

4 out of the 50 patients, was noted to have wound dehiscence where suture removal was delayed until 3 weeks and the wound healing was ensured at the end of 8 weeks. Regular dressings were done, and the wound healed with secondary intention without any further intervention. For this patient regular cultures were taken, and the antibiotics were changed accordingly. 4 developed superficial patient wound infection, for which regular dressings were done and antibiotics changed according to culture reports. The wound subsequently healed well by the end of 6 weeks. Further, 4 patients showed delayed healing wherein the wound healed by 3-4 weeks and regular dressings were ensured during that period (Table 6). 4 patient developed sural nerve hypoesthesia.

Table 5: Gissane and Bohler angle

Gissane angle	Mean ± SD	P value
Normal	112.87±7.93	< 0.001
Operate	121.75±9.63	<0.001
Bohler Angle		< 0.001
Normal	33.22±4.23	<0.001

Operate	27.88±5.26	
Operate	27.0023.20	

Table 6: Result six-week wound healing distribution of patients

Result Six-week wound healing	No. of patients	%
Poor	4	8
Fair	11	22
Good	35	70
Total	50	100

None of the patients developed heel pad problems, compartment syndrome or peroneal tendinitis. None were noted to develop subtalar arthrodesis in the observation period

Discussion

The incidence of calcaneus fracture depends upon factors such as gender, age, and mechanism of injury. In our study majority were young adults and male patients in the age group between below 30 to 60 years of age with a surge among midtwenties. The mechanism of injury being fall from height (82%) and road traffic accidents/ vehicular accidents (18%)[11]. According to this scale, 35 patients (70%) had good outcome, 11 patients had fair outcome (22%) while 4 patients (8%) had poor outcome. The long-term results of calcaneal fractures usually include persistence of pain for many years after trauma, but not enough to significantly affect the activity of daily living.

Calcaneus fracture is difficult to manage due to its complex bony anatomy, tenuous soft tissue envelope and difficulty of acquiring anatomic reduction and rigid fixation. The other factors that might play a role include the intensity of trauma, as calcaneal fractures often result from high energy trauma, associated with open and contaminated fractures; also, the limited vascularity owing to the thin layer of skin overlying the calcaneus may play a role.

There is some controversy regarding whether to manage calcaneal fractures conservatively or via surgical options. The risk of major complications after surgery is high but development of subtalar arthritis is significantly greater after conservative treatment[12]. However, in the largest prospective randomized trial described till

date, Buckley et al. found better results in patients after surgery[13].

ISSN: 0975-1556

The incidence of superficial wound infections after fracture management is high (8%) as compared to lower extremity fractures. Sural nerve injury(8%) was also noted in our study group, which is similar to that in many studies in literature[14].

According to previous studies. displaced calcaneal fractures the best functional and radiological outcomes were obtained with ORIF through an extended lateral approach, but the technique is criticised for its complications, most frequently affecting the soft tissues. Screws and plates can be used for fixation of the fragments and when the patient experiences persistent pain because of screws or plates, hardware can be (partially) removed[15].

In developing countries like ours, less complicated fractures like Sander's type II are usually treated conservatively in secondary care centers and are not referred to tertiary centers.

Melcher, in his study followed up patients who underwent ORIF, after a period of 3 years and 10 years following the surgery. He observed that the subjective and objective results assessed after 10 years were better than those achieved after the three-year follow-up[16].

In Sander's study, excellent or good results were seen in 73% of type-II, 70% of type-III, and 27% of type-IV fractures (sanders classification)[17]. A similar study conducted in our sub-continent where the

sample size was twenty had 65% good and 35% fair or poor results at the end of a 6 months follow up period[18]. The average number of Sander's type III fractures in our study was 66% which is not comparable to previous studies. The mean number of days between the history of fall and surgery in our study was 10.91±3.45days, which is comparable to studies by Weber M1, 14 Lehmann O, Sa"gesser D. There were certain limitations in our study. Only 50 patients with calcaneal fractures were operated and their functional outcome was measured at a mean follow-up of only 6 months. A study involving a comparatively large number of patients and followed up for a longer period of time can more accurately assess the functional outcome of displaced intra- articular fractures of the calcaneum treated by this method.

Conclusion

We concluded that the anatomic locking plate can be used effectively in the treatment of displaced intraarticular calcaneal fractures using simple reduction techniques with a potentially shortened operating time.

Reference

- 1. Fitzgibbons TC. McMullen ST. Mormino MA. Fractures and dislocations of the calcaneus. In: Bucholz RW, Heckman JD, editros. Rockwood and Green's Factures in Philadelphia: Adults. Lippincott Williams & Wilkins; 2001;5(3):2133-79.
- 2. Murphy GA. Fractures and dislocations of foot. In: Canale ST, editror. Campbell's Operative Orthopaedics. Philadelphia: Mosby Inc.; 2003;10(4):4231-83.
- 3. Pendse A, Daveshwar RN, Bhatt J, Shivkumar. Outcome after open reduction and internal fixation of intraarticular fractures of the calcaneum without the use of bone grafts. Indian J Orthop 2006; 40:111-4.
- 4. Mostafa MF, El-Adl G, Hassanin EY, Abdellatif MS. Surgical treatment of

displaced intra-articular calcaneal fracture using a single small lateral approach. Strategies Trauma Limb Reconstr 2010; 5:87-95.

ISSN: 0975-1556

- Varela CD, Vaughan TK, Carr JB, Slemmons BK. Fracture blisters: Clinical and pathological aspects. J Orthop Trauma 1993; 7:417-27.
- 6. SandersR, Fortin P, DiPasquale T, Walling A. Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification. Clin Orthop Relat Res 1993 May;(290):87-95.
- 7. Sanders R. Intra-articular fractures of the calcaneus: Present state of the art. J Orthop Trauma 1992; 6:252-65.
- 8. Batra GS, Jain B. Management of fractures of calcaneum. J Orthop. 2009; 6:36-40
- 9. Makki D, Alnajjar HM, Walkay S, Ramkumar U. Osteosynthesis of displaced intraarticul fractures. J Bone Joint Surg. 2010; 92:693-700.
- 10. Wu Z, Su Y, Chen W, Zhang Q, Liu Y, Li M, et al. Functional outcome of displaced intra-articular calcaneal fractures: A comparison between open reduction/internal fixation and a minimally invasive approach featured an anatomical plate and compression bolts. J Trauma Acute Care Surg. 2012;73(3):743-51
- 11. Mitchell MJ, McKinley JC, Robinson CM. The epidemiology of calcaneal fractures. Foot. 2009;19(4):197–200.
- 12. Bruce J, Sutherland A. Surgical versus conservative interventions for displaced intra-articular calcaneal fractures. Cochrane Database Syst Rev. 2013;(1):CD008628.
- 13. Buckley R, Tough S, Mccormack R, Pate G, Leighton R, Petrie D, et al. Operative compared with non-operative treatment of dispalced intra-articular calcaneal fractures: a prospective, randomised, controlled multicentric trial. J Bone Joint Surg Am. 2002; 84:1733–44.

- 14. Hans Z, Harald T, Hajo T, Theresa W. Osteosynthesis of Displaced Intraarticular Fractures of the Calcaneus. Clin Orthop Related Res. 1993; 290:76–86.
- 15. Veltman ES, Doornberg JN, Stufkens SA, Luitse J, van den Bekerom M. Long-Term Outcomes of 1,730 Calcaneal Fractures: Systematic Review of the Literature. Ame Coll Foot Ankle Surg. 2013;52(4):486–90.
- 16. Melcher G, Degonda F, Leutenegger A, Ruedi T. Ten-Year Follow-up after

Operative Treatment for Intraarticular Fractures of the Calcaneus. J Trauma: Inj, Infect, Crit Care. 1995;38(5):713–6.

ISSN: 0975-1556

- 17. Jain V, Kumar R, Mandal DK. Osteosynthesis for Intra-Articular Calcaneal Fractures. J Orthop Surg. 2007;15(2):144–8.
- 18. Aju T, Binoj C, Francis J. A study of functional outcome of calcaneal fractures treated with open reduction and internal fixation. Indian J Appl Res. 2018;7(10).