International Journal of Pharmaceutical and Clinical Research 2022; 14(2); 444-448

Original Research Article

An Observational Study to Identify Different Bacterial Etiologies of Surgical Site Infections

Shiv Kumar Mehi¹, Amit Kumar²

¹Tutor, Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Bhagalpur, Bihar, India

²Associate Professor, Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Bhagalpur, Bihar, India

Received: 07-11-2021 / Revised: 29-12-2021 / Accepted: 23-01-2022 Corresponding author: Dr. Amit Kumar **Conflict of interest: Nil**

Abstract

Aim: The aim of the present study is to identify bacterial etiology of surgical site infections. Material and methods: The study was a cross sectional study which was carried in the Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Bhagalpur, Bihar, India for 1 year. Using sterile cotton swabs, two pus swabs/ wound swabs were collected aseptically from each patient suspected of having SSI. Gram stained preparations were made from one swab for provisional diagnosis. The other swab was inoculated on nutrient agar, 5% sheep blood agar (BA) and MacConkey agar (MA) plates and incubated at 37°C for 24-48 hours before being reported as sterile. Growth on culture plates was identified by its colony characters and the battery of standard biochemical tests. All the isolates were tested for antimicrobial susceptibility by Kirby Bauer disk diffusion technique on Muller Hinton Agar.

Results: Out of 230 samples, 120 samples were culture positive (52.17%). Among 120 positive samples 67(55.83%) were males. Maximum no. of culture positive samples in age 20-30 years (32.5%) followed by 30-40 (17.5%) and then followed by 40-50 (15.83%) of age group respectively. Out of 120 culture positive samples S.aureus (26.67%) was the most common pathogen isolated followed by Escherichia coli. (23.33%), Citrobacter spp. (15.83%)) and Pseudomonas aeruginosa (9.17%), Klebsiella spp 10(8.33%), CONS 8(6.67%), Enterob -acter spp. 7(5.83%), Acinetobacter spp 3(2.5%) and Proteus spp. 2(1.67%) respectively. **Conclusion:** We conclude that SSIs are common among patients undergoing surgeries.

Key words: wound infection, surgical site infection, S.aureus

This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Surgical site infections (SSI), one of the most common causes of nosocomial infections are a common complication associated with surgery, with a reported incidence rates of 2-20%.^[1] It is responsible for increasing the treatment cost, length of hospital stay and significant morbidity and mortality. Despite the technical advances in infection control and surgical practices, SSI still continue to be a major problem, even in hospitals with most modern facilities.^[2] These infections are usually caused by exogenous and/ or endogenous micro organisms that enter the operative wound either during the surgery (primary infection) or after the surgery (secondary infection). Primary infections are usually more serious, appearing within five to seven days of surgery.[^{3]} Majority of SSIs are uncomplicated involving only and subcutaneous tissue skin but sometimes can progress to necrotizing infections. The usual presentation of surgical wound infected can be characterized by pain, tenderness, warmth, erythema, swelling and pus formation.^[4,5] A number of patient related factors (old nutritional status, pre existing age. infection, co-morbid illness) and procedure related factors (poor surgical technique, duration of prolonged surgery. pre operative part preparation, inadequate sterilization of surgical instruments) can influence the risk of SSIs significantly.² In addition to these risk factors, the virulence and the invasiveness of the organism involved, physiological state of the wound tissue and the immunological integrity of the host are also the important factors that determine whether infection occurs or not.[6]

Surveillance data suggest that the types of causative organisms associated with SSI have not significantly changed over the past 10-15 years; however, the proportion of different types of causative organisms has changed. Antimicrobial-resistant organisms are causing an increasing proportion of SSIs, and there has been a rise in the number of infections caused by atypical bacterial and fungal organisms. These changing proportions have been attributed to the increasing acuity of surgical patients, the increase in the number of immunocompromised patients, and the increasing use of broad-spectrum antibiotics.^[7] Surgical site infections are still a threat to patients, in spite of the antibiotics available today. newer Although properly administered antibiotics can reduce postoperative surgical site secondary infections to bacterial

contamination, widespread use of antibiotics can prophylactic lead to emergence of multi drug resistant bacteria. The higher rates of surgical site infections are associated with higher morbidity, increased medical mortality and expenses.^[8] Over the past many years, there has been a huge increase in the number of SSI cases as reported by hospitals and it has been observed that many of the cases which were deemed serious were caused by gram negative organisms. Furthermore, the irrational use of high dose broad spectrum antibiotics and antimicrobial resistance has further accelerated this scenario. In developing countries like India, where hospitals have inadequate infrastructure, poor infection control practices, overcrowded wards and practice of irrational use of antimicrobials, the problem of SSIs gets more convoluted. The aim of the present study is to identify bacterial etiology of surgical site infections.

Material and methods

The study was a cross sectional study which was carried out among 230 patients in the Department of Microbiology, Jawaharlal Nehru Medical College and Hospital, Bhagalpur, Bihar, India for 1 year.

Inclusion and exclusion criteria

- Patients with SSIs either sex or any age, who had surgical wound pus, discharge, or signs of sepsis were include in this study.
- Patients with cellulitis and suture abscess were excluded from this study.

Methodology

Using sterile cotton swabs, two pus swabs/ wound swabs were collected aseptically from each patient suspected of having SSI. Gram stained preparations were made from one swab for provisional diagnosis. The other swab was inoculated on nutrient agar, 5% sheep blood agar (BA) and MacConkey agar (MA) plates and incubated at 37°C for 24-48 hours before being reported as sterile. Growth on culture plates was identified by its colony characters and the battery of standard biochemical tests.[^{9,10]} All dehydrated media, reagents were procured from Hi Media Laboratories Pvt. Ltd., Mumbai, India.

Statistical Analysis:

Data was entered in Microsoft excel spreadsheet and analysed using appropriate statistical software application.

Results

Out of 230 samples, 120 samples were culture positive (52.17%) (Table1).

Among 120 positive samples 67(55.83%) were males (Table 1). The age wise distribution of the gender has been shown in the (Table 2) with maximum no. of culture positive samples in age 20-30 years (32.5%) followed by 30-40 (17.5 %) and then followed by 40-50 (15.83%) of age group respectively. Out of 120 culture positive samples S.aureus (26.67%) was the most common pathogen isolated followed by Escherichia coli. (23.33%), Citrobacter spp. (15.83%)and Pseudomonas aeruginosa (9.17%),Klebsiella spp 10(8.33%), CONS 8(6.67%), Enterobacter spp. 7(5.83%), Acinetobacter spp 3(2.5%) and Proteus spp. 2(1.67%) respectively (Table 3).

Patients Table-1: Gender wise distribution of Culture positive

Gender	No of patients=120
Male	67 (55.83%)
Female	53 (44.17%)

Table-2: Age wise Distribution of Culture Positive Patients

Age in year	Culture Positive
Below 20	17 (14.17)
20-30	39 (32.5)
30-40	21(17.5)
40-50	19 (15.83)
50-60	15(12.5)
Above 60	9(7.5)

Table-3: Distribution of Organisms Causing Surgical Site Infection

Organism	No. of isolates (%)
Staphylococcus aureus	32(26.67)
Escherichia coli	28 (23.33)
Citrobacter spp.	19(15.83)
Pseudomonas aeruginosa	11(9.17)
Klebsiella spp.	10(8.33)
CONS	8 (6.67)
Enterobacter spp.	7(5.83)
Acinetobacter spp.	3 (2.5)
Proteus spp.	2 (1.67)
Total	120

Discussion

Despite the modern aseptic procedures followed in the hospital, SSI remains as a serious problem for patients and surgeons. Hospitals serve as a reservoir for SSIs as they harbour a variety of pathogenic microbes and multi drug resistant strains. Wound Infections are the most commonly reported entity following surgical procedures from the hospitals. Regardless of the current advances in surgical procedures, availability of broad spectrum antibiotics. clean and safe wound practices management and modern hospital management systems, SSIs still remain a challenge for practicing surgeons and health care personnel's. Moreover, the patients undergoing surgery have an extra threat of microbial colonies circulating in the hospital environment which may make them susceptible to SSIs. The burden of antimicrobial resistance adds to the burden. Most of the SSIs are hospital acquired and vary from one health care facility to another.

Out of 230 samples, 120 samples were culture positive (52.17%). Whereas various other studies from India have shown the rate of SSI to vary from 6.1% to 38.7%.[11-14] The main Reason behind may be due to the lack of attention towards the infection control measures, inappropriate hand hygiene practices and overcrowded hospitals. In our study, it was observed that rate of infection was higher in male patients (55.83%). The results were similar to a study by Vikrant Negi et al, who reported that (74.6%) males were more commonly affected than females (25.5%).[15] In contrast to our study Gangania P et al reveals that 20% Females shows almost equal distribution of 19% of males.[16]

The findings in the study revealed that maximum no. of culture positive samples in age 20-30 years (32.5%) followed by 30-40 (17.5%) and then followed by 40-50 (15.83%) of age group respectively.

Similar results were showed by Pooja Singh Gangania who concluded that maximum no of SSI was in 16-45 years of age group (24%) patient. This may be due to heavy work load, stress at this age group and less number of patients.[16] S.aureus (26.67%) was the most common pathogen isolated followed by E.coli (23.33%). This result is consistent with reports from other studies SP Lilani, Mulu W.[12,17] S. aureus infection is most likely associated with endogenous source as it is a member of the skin and nasal flora and also with contamination from environment, surgical instruments or from hands of health care workers.[15][18]

Conclusion

We conclude that SSIs are common among patients undergoing surgeries.

Reference

- Hohmann C, Eickhoff C, Radziwill R, Schulz M. Adherence to guidelines for antibiotic prophylaxis in surgery patients in German hospitals: a multicentre evaluation involving pharmacy interns. Infection. 2012;40(2):131-37.
- Owens CD, Stoessel K. Surgical site infections: epidemiology, microbiology and prevention. J Hosp Infect. 2008;70(Suppl 2): 3-10.
- 3. Pradhan GB, Agrawal J. Comparative study of post operative wound infection following emergency lower segment caesarean section with and without the topical use offusidic acid. Nepal Med Coll J. 2009;11(3):189-91.
- 4. Ahmed MI. Prevalence of nosocomial wound infection among postoperative patients and antibiotics patterns at teaching hospital in Sudan. N Am J Med Sci .2012;4(1):29-34.
- 5. Mulu W, Kibru G, Beyene G, Datie M. Postoperative nosocomial infections and antimicrobial resistance patterns of bacterial isolates among patients admitted at FelegeHiwot Referral

Hospital, Bahirdar, Ethiopia. Ethiop J Health Sci. 2012;22(1):7-18.

- Masaadeh HA, Jaran AS. Incident of Pseudomonas aeruginosa in postoperative wound infection. Am J Infect Dis. 2009;5:1–6.
- 7. SievertDM, RicksP, EdwardsJR, SchneiderA, PatelJ, SrinivasanA, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: Summary of data reported the national healthcare safety to network at the centers for disease control and prevention, 2009-2010. Epidemiol Infect Control Hosp 2013;34:1-4.
- 8. Sasse A, Mertens R, and Sion JP, et al. Surgical prophylaxis in Belgian hospitals Estimate of costs and potential savings. J Antimicrobial Chemotherapy 1998; 41: 267-272
- MacFaddin J. Biochemical Tests for Identification of Medical Bacteria. 3 rded. Philadelphia: Lippincott Williams and Wilkins; 1976.
- Forbes BA, Sahm DF, Weissfeld AS. Bailey and Scott's Diagnostic Microbiology.10th ed. St. Louis, Misssouri, USA: Mosby Inc.; 1998
- 11. Alsaimary, I. E, & Mezban, F. H. (2021). The Estimation of serum inflammatory cytokines (IL-4, IL 10 and IL 17) and total IgE concentrations in patients with bronchial asthma by ELISA technique. Journal of Medical Research and Health Sciences, 4(1), 1151–1155. https://doi.org/10.15520/ jmrhs.v4i1.305
- 12. Malik S, Gupta A, Singh PK, Agarwal J, Singh M. Antibiogram of aerobic bacterial isolates from postoperative wound infections at a tertiary care hospital in india. Journal of Infectious

Diseases Antimicrobial Agents. 2011;28:45-51.

- Lilani SP, Jangale N, Chowdhary A, Daver GB. Surgical site infection in clean and clean-contaminated cases. Indian J Med Microbiol. 2005 ;23(4):249-52.
- 14. Khan A K A, Rashed MR, Banu G. A Study on the Usage Pattern of Antimicrobial Agents for the Prevention of Surgical Site Infections (SSIs) in a Tertiary Care Teaching Hospital. J Clin Diagn Res. 2013 ;7(4):671-4.
- 15. Chakarborty SP, Mahapatra SK, Bal M, Roy S. Isolation and identification of [14] vancomycin resistant Staphylococcus aureus from postoperative pus sample. Al Ameen J Med Sci. 2011; 4(2):152-68.
- 16. Negi V, Pal S Juyal D, Sharma M K, Sharma N. Bacteriological Profile of Surgical Site Infections and Their Antibiogram: A Study From Resource Constrained Rural Setting of Uttarakhand State, India. Journal of Clinical and Diagnostic Research. 2015;9(10)
- 17. Gangania P S, Singh V A, Ghimire S S. Bacterial Isolation and Their Antibiotic Susceptibility Pattern from Post-Operative Wound Infected Patients. Indian J Microbiol Res 2015; 2(4):231-235.
- Mulu W, Kibru G, Beyene G, Damtie M. Postoperative nosocomial infections and antimicrobial resistance pattern of bacteria isolates among patients admitted at Felege Hiwot Referral Hospital, Bahirdar, Ethiopia. Ethiopian Journal of Health Sciences. 2012; 22(1):7–18.