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Abstract 
Background: Heart failure is the final stage of various cardiovascular diseases. Statistical 
models and machine learning (ML) algorithms have been proposed to predict heart failure. 
However, the present study used ML classifiers to predict survival in heart failure patients.  
Materials and Methods: The study dataset consists of a random sample of medical records 
of 299 heart failure patients. The dataset is publicly available on the Machine Learning 
Repository website of the University of California Irvine (UCI ML). Thirteen predictors and 
one response variable ('Event') were present in the database. Except for 'Time’, other 
predictors were used in predicting survival in heart failure patients. Oversampling methods 
were employed to balance the dataset using the ROSE package in R. Predictors differed and 
contributed significantly to prediction and were used to train ML classifiers on MATLAB 
classifier application with 5-fold cross-validation. The performance metrics of the machine 
learning classifier were expressed as accuracy, the area under the receiver operator 
characteristic (AU-ROC) curve, sensitivity, and specificity. 
Results: The predictors used to train machine learning classifiers were hypertension, age, 
creatinine concentration, CPK, ejection fraction, and sodium concentration. The best model 
was the ensemble-based Subspace K-nearest neighbor model. The accuracy, AU-ROC, 
sensitivity, and specificity were 89.5%, 93%, 87%, and 92%, respectively. 
Conclusion: The present study used biostatistical tests and a logistic regression model to 
optimize feature selection. The features that contributed significantly to the logistic 
regression model were used to train machine learning classifiers. The study showed better 
performance metrics in predicting survival in heart failure patients. 
Keywords: classifiers, ejection fraction, heart failure, machine learning, prediction.   
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Introduction 

Cardiovascular diseases (CVDs) are the 
leading cause of mortality worldwide, with 
an estimated 17.9 million deaths yearly. 
CVDs are a group of heart and blood 
vessel disorders, including coronary heart 
disease, cerebrovascular disease, 
rheumatic heart disease, and other 
conditions.  [1] Heart failure (HF) is a 
clinical syndrome characterized by 
shortness of breath, fatigue, and signs of 
edema and pulmonary crackles. [2] Heart 
failure is a risk factor for diseases such as 
atrial fibrillation, stroke, and coronary 
artery disease. Further, heart failure is a 
consequence of other diseases, including 
rheumatic, hypertensive, or coronary artery 
disease. [3] Ischemic heart disease is the 
leading cause of mortality. Global Burden 
of Disease (GBD) Study 2019 ranked risk 
factors for ischemic heart disease 
including high systolic blood pressure, 
dietary risks, high LDL cholesterol, air 
pollution, high body mass index, tobacco, 
high plasma blood glucose, kidney 
dysfunction, non-optimal temperature, 
other environmental risks, alcohol use, and 
low physical activity. [4] Heart failure is 
characterized by inadequate pumping of 
blood by the heart. Approximately one-
half of the patients with heart failure have 
preserved ejection fraction (HFpEF) rather 
than reduced ejection fraction (HFrEF). [5] 
Statistical and machine learning models 
were used to predict disease models in 
medicine. [6,7,8,9,10,11,12] Many models 
predict heart failure using various risk 
factors.  [13,14] However, the present 
study predicts the survival of heart failure 
patients using machine learning 
classification. 
Materials and Methods  
The present study predicts survival in heart 
failure patients using machine learning 
(ML) classifiers. The study dataset 
consists of a random sample of medical 
records of 299 heart failure patients 
collected at the Faisalabad Institute of 
Cardiology and the Allied Hospital in 

Faisalabad (Punjab, Pakistan) during 
April–December 2015. The dataset is 
publicly available on the Machine 
Learning Repository website of the 
University of California Irvine (UCI ML). 
Thirteen predictors and one response 
variable ('Event') were present in the 
database. Except for 'Time', other 
predictors were used in predicting survival 
in heart failure patients. The predictors 
included were gender, smoking, diabetes 
mellitus, hypertension, anemia, age, 
ejection fraction, serum creatinine, sodium 
concentration, platelets, and creatine 
phosphate kinase concentration. The 
response variable 'Event' has two levels: 
death (N= 203) and alive (N= 96). As the 
dataset was imbalanced, oversampling 
methods were employed using the ROSE 
package in R. The balanced data has 197 
alive and 203 death cases. The features 
differed significantly between the two 
response levels using biostatistical tests. A 
logistic regression model using the 
stepwise method was fitted using 
significantly differed features to find the 
contribution of each predictor in survival 
prediction. The features contributing 
significantly were chosen for ML training 
and classification. The ML classifier 
application on MATLAB 2019a was used 
for classification with 5-fold cross-
validation.  

The classifiers used in this application 
include Decision Trees, Support Vector 
Machine (SVM), K-Nearest Neighbors 
(KNN), and ensemble learning classifiers. 
The decision trees include complex, 
medium, and simple tree classifiers. 
Similarly, the SVMs include linear, 
quadratic, cubic, fine Gaussian, medium 
Gaussian, and coarse Gaussian classifiers. 
The ensemble classifiers have boosted 
trees, bagged trees, and RUS boosted tree 
classifiers. 

Statistical analysis 
The quantitative data were expressed in 
median (IQR) and compared using the 
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non-parametric Mann-Whitney's U test. 
The categorical data were expressed in 
percentage, and the relationship between 
discrete variables was found using a chi-
squared test. The performance metrics of 
the machine learning classifier were 
expressed as accuracy, the area under the 
receiver operator characteristic (AU-ROC) 
curve, sensitivity, and specificity. R 
version 4.1.2software was used for 
balancing data between two groups, and 
JASP version 0.16.2 was used for 
statistical analysis. MATLAB 
Classification Learner application 2019a 

was used for training and prediction. The 
significance level was considered at 5%.  

Results  
The discrete variables including gender 
[���= 0.175, p = 0.676], smoking [���= 
0.044, p=0.833], diabetes mellitus [���= 
0.023, p = 0.878], anemia [���= 0.21, p = 
0.647] did not differ significantly except 
hypertension [���= 10.913, p < 0.001] 
between the two groups of heart failure. 
The patients who died due to heart failure 
had a higher percentage of hypertensives 
than alive patients. 

Table 1: Comparison of discrete features in dead and alive patients of heart failure. 
Category Levels Alive Death ���value p-value 

Gender Female 71(34.975) 65(32.995) 0.175 0.676 Male 132(65.025) 132(67.005) 

Smoking Non-smoker 137(67.488) 131(66.497) 0.044 0.833 Smoker 66(32.512) 66(33.503) 

Diabetes Mellitus Absent 118(58.128) 116(58.883) 0.023 0.878 Present 85(41.872) 81(41.117) 

Hypertension Absent 137(67.488) 101(51.269) 10.913 < .001 Present 66(32.512) 96(48.731) 

Anemia Absent 120(59.113) 112(56.853) 0.21 0.647 Present 83(40.887) 85(43.147) 

In case of continuous variables, the 
patients died of heart failure showed 
higher age [W=15415, p < 0.001], 
creatinine levels [W= 11481, p <0.001], 
and creatine phosphate kinase 
concentration [W=17609.5, p = 0.038]. 
However, the same patients had a lower 

levels of ejection fraction [W= 28476, p 
<0.001], and sodium concentration 
[W=25622.5, p <0.001] compared to alive 
patients. However, platelets showed no 
significant differences between the two 
groups [W = 21337, p = 0.246]. 

 Table 2: Comparison of continuous features in dead and alive patients of heart failure 
    Median IQR* W  p-value 

Age Alive  60 15 15415 < .001 Death 65 22 

Ejection fraction Alive  38 10 28476 < .001 Death 30 18 

Sodium Alive  137 4.5 25622.5 < .001 Death 136 5 

Creatinine Alive  1 0.3 11481 < .001 Death 1.3 0.83 

Platelets Alive  263000 82500 21337 0.246 Death 255000 122000 

CPK Alive  245 473 17609.5 0.038 Death 418 439 
*IQR: Interquartile range; W: test statistics 
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The variables significantly differed between the two groups, including hypertension, age, 
creatinine concentration, CPK, ejection fraction, and sodium concentration, were selected to 
fit a logistic regression model using the stepwise method. The model showed that all the 
variables contributed significantly to the prediction of the heart failure group.  

Table 3: Estimated parameters of the Logistic regression model using predictors with 
response variable as survival in heart failure patients. 

  Wald Test 

Parameter Estimate Standard 
Error z Wald 

Statistic df* p-value 

(Intercept) 8.89 3.791 2.345 5.5 1 0.019 
Ejection.Fraction -0.063 0.011 -5.723 32.758 1 < .001 
Serum creatinine 0.609 0.163 3.733 13.938 1 < .001 
Age 0.048 0.01 4.617 21.321 1 < .001 
CPK 0 0 3.002 9.01 1 0.003 
Blood pressure 0.761 0.242 3.147 9.903 1 0.002 
Serum sodium -0.081 0.028 -2.898 8.397 1 0.004 

*df: degrees of freedom 

Table 4: Performance metrics of the ensemble-based Subspace KNN model used for 
predicting survival in heart failure patients. 

Performance metrics Percentage 
Accuracy 89.5% 
AUC 93% 
Sensitivity 87% 
Specificity 92% 

The variables mentioned above were used as predictors to train various Machine learning 
classifiers using the Classification learner app on MATLAB. The best model was the 
ensemble-based Subspace K-nearest neighbor model. The accuracy, AU-ROC, sensitivity, 
and specificity were 89.5%, 93%, 87%, and 92%, respectively.  

 
Figure 1: Confusion matrix for the ensemble-based Subspace KNN model. 
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Figure 2: The area under the receiver operator characteristic curve for the ensemble-

based Subspace KNN model. 
 
Discussion 
Heart failure is a clinical syndrome seen in 
the terminal stage of many heart diseases. 
The heart’s reduced pumping ability leads 
to the inadequate blood supply to the body. 
[2] However, nearly half of the patients 
with heart failure have preserved ejection 
fraction. [6] The present study generates 
results that differ from the original dataset 
curators study. The present study used 
more predictors to increase performance 
metrics. Ahmad et al. did a survival 
analysis of heart failure patients using the 
same dataset. Cox regression was used to 
model the mortality. Researchers found 
age, renal dysfunction, blood pressure, 
ejection fraction, and anemia were 
significant risk factors governing the 
mortality risk.  [15] The present study used 
an ensemble-based Subspace K-nearest 
neighbor model with accuracy, AU-ROC, 
sensitivity, and specificity were 89.5%, 
93%, 87%, and 92%, respectively. 
Many studies were focused on the 
prediction of heart failure. [16,17,18] 
However, fewer studies focused on the 
prediction of adverse outcomes in heart 
failure patients. The present study used 

machine learning classifiers to predict 
survival in heart failure patients. 
Smith et al., with an echocardiogram of 
4696 patients, developed a risk model to 
predict the 5-year mortality risk or 
hospitalization in heart failure patients 
from 1999 to 2004. Researchers observed 
a 56% five-year risk of hospitalization for 
heart failure or death (95% confidence 
interval, 54% to 58%). The hazard ratios 
for echocardiogram data contributed 
statistically significantly to the model. 
However, echocardiogram findings did not 
improve prediction risk once demographic 
and clinical data were used. [19] Chicco et 
al. predict the survival of heart failure 
patients using machine learning 
algorithms. They develop a two-feature 
model using ejection fraction and serum 
creatinine. The Random Forest performed 
best in the survival prediction, obtaining 
an accuracy of 74% and AU-ROC of 80%.  
[20]. Newaj et al. used a Random Forest 
classifier to predict survival on the same 
dataset. Researchers found a maximum G-
mean score of 76.83% with a sensitivity 
score of 80.21%. [21] Zeman et al. used 
two unsupervised models (K-Means and 
Fuzzy C-Means clustering) and three 
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supervised classifiers (Random Forest, 
XGBoost, and Decision Tree) to 
demonstrate a superior performance of the 
supervised ML algorithms over 
unsupervised models. The proposed 
supervised stacked ensemble learning 
model can achieve an accuracy, precision, 
recall, and F1 score of 99.98%. [22] The 
performance metrics might depend on the 
number of independent predictors used to 
train ML classifiers. The present study 
used six predictors, including 
hypertension, age, serum creatinine, CPK, 
ejection fraction, and serum sodium 
concentration, to train machine learning 
classifiers. [23] 

Conclusion 
The present study used biostatistical and 
logistic regression models to optimize 
feature selection. The features that 
contributed significantly to the logistic 
regression model were used to train 
machine learning classifiers. The study 
showed better performance metrics in 
predicting survival in heart failure patients. 
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