e-ISSN: 0975-1556, p-ISSN:2820-2643 ## Available online on www.ijpcr.com International Journal of Pharmaceutical and Clinical Research 2023; 15(1); 1264-1272 **Original Research Article** # A Prospective Functional Outcome Assessment of Intra Articular Calcaneum Fracture Managed Surgically with Plate Fixation Sanjeev Kumar Shukla¹, Bimlesh Kumar Bimal², Rajeev Kumar³, Vidya Sagar⁴, Raman Kumar⁵, Vibhu Upadhyay⁶ ¹Senior Resident, Department of Orthopaedics, Varun Arjun Medical College and Rohilkhand Hospital, Sahjanpur, Uttar Pradesh, India ²Senior Resident, Department of Orthopaedics, IGIMS, Patna, Bihar, India ³Senior Resident, Department of Orthopaedics, IGIMS, Patna, Bihar, India ⁴Assistant Professor, Department of Orthopaedics, IGIMS, Patna, Bihar, India ⁵Junior Resident, Department of Orthopaedics, Varun Arjun Medical College and Rohilkhand Hospital, Sahjanpur, Uttar Pradesh, India Received: 17-12-2022 / Revised: 18-01-2023 / Accepted: 28-01-2023 Corresponding author: Dr. Rajeev Kumar **Conflict of interest: Nil** #### Abstract **Aim:** The aim of the present study was to evaluate the functional and radiological outcome of intra-articular calcaneal fractures managed surgically with a plate in terms of bohler's and gissane's angle, rate of radiological union and AOFAS score. **Methods:** The Prospective study was done at tertiary health care centre of north india and ethical clearance was taken for 2 years and a total of 30 patients with intra-articular calcaneal fractures meeting the inclusion and exclusion criteria were chosen for the study. **Results:** In our study, patients between the ages group 18 yr and 60yr with a mean age of 33.36yr were included. The majority of the patients in the study were males, with 90% of the study population. In this study, 60% of the patients had right side involvement and 40% of the patients had left side involvement. The most common mode of injury in the study group was falling from height followed by RTA. The most common fracture type in our study was Sander's type II, followed by type IV. Type III was the least common. In all the patients included in the study, surgery was delayed until the appearance of wrinkles on the skin to avoid the complication of wound dehiscence and for appropriate wound closure. The number of days from the injury to surgery varied from 4 to 14 days with an average of 7.8 days. The average time period for the radiological union was 13.64 weeks in the study population. Conclusion: We concluded that with proper pre-operative planning, the timing of surgery, intra- operative expertise of the surgeon, and post-operative care, surgical management of intra-articular fracture using a locking plate, gives a better outcome and minimal complications. **Keywords:** Calcaneal Fractures, Intra-Articular, High Energy Fractures, Soft Tissue, Operative Techniques. This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited. #### Introduction Calcaneus fractures are the most common of all tarsal fractures (60%), and account for almost 2% of all adult fractures. [1] The surgeons are always in a dilemma while treating a case of displaced calcaneal fracture. Some surgeons are now operatively treating these fractures because of continuing dissatisfaction with the outcome of conservative treatment and improvements that have occurred in surgical techniques resulting in decrease in complication rates. [2] Calcaneum or heel bone fractures are the commonest fractures of the tarsal bones. [3] They result primarily due to high energy trauma and axial loading to the foot. [4] The incidence of calcaneal fracture is 11.5 per 100,000 population annually. It occurs 2.4 times more frequently in males. In males, the age of incidence is noted to range between 20-29 years.3 The appropriate standard operative treatment for calcaneal fractures is a controversy. Several studies in the past have encouraged open reduction and internal fixation as the standard protocol. But, there have been several complications associated with it. [5-8] intraarticular The management of calcaneal fractures remains controversial. with strong arguments supporting both conservative & operative managements. Recent studies are of varied opinion; some citing no difference between the two & others suggesting operative to be a better option. Significant controversy remains over the results of nonoperative versus operative treatment. The lack standardization of results has made it difficult to compare studies that have evaluated outcomes. [9] Historically, there have been dramatic changes management protocols as our understanding of the fracture has evolved. The historical statement by Cotton that "the man who breaks his calcaneus is done". [10] Perhaps it does not hold well in the twenty-first century. e-ISSN: 0975-1556, p-ISSN: 2820-2643 Over the past 25 years, however, marked advances in anesthesia, prophylactic antibiotics, CT scanning, and fluoroscopy have allowed surgeons to improve outcomes when operating on fractures, and these techniques have been applied to calcaneal fractures as well. Overall, operative treatment of acute fractures has become the standard of care for many authors who, critically evaluating their results, have concluded that good outcomes are possible. The aim of the present study was to evaluate the functional and radiological outcome of intra-articular calcaneal fractures managed surgically with a plate in terms of bohler's and gissane's angle, rate of radiological union and AOFAS score. ## **Materials and Methods** The Prospective study was done at tertiary health care centre of north india and ethical clearance was taken for 2 years and a total of 30 patients with intra-articular calcaneal fractures meeting the inclusion and exclusion criteria were chosen for the study. ## **Inclusion Criteria** - 1. Patients aged between 18-60yrs. - 2. Intra-articular fracture of calcaneum (Sanders classification) ## **Exclusion Criteria** - 1. Patients with extra-articular fracture - 2. Open fracture (Gustillo-Anderson type 2 and 3) - 3. Patients medically not fit for surgery - 4. Paraplegia/paraparesis as they interfere with the assessment of the functional outcome of the surgery - 5. Fracture in osteoporotic bone - 6. Fracture of the long bone in the ipsilateral limb ## 7. Sanders type I calcaneal fracture # Methodology and procedure After admitting the patients with intraarticular calcaneal fractures satisfying the inclusion criteria, relevant investigations were done and fitness for surgery was taken. Appropriate measures were taken to reduce the swelling, such as below knee slab with cotton padding, limb elevation, and ice pack application. Pre-operative xravs-lateral and axial view of the calcaneam and CT scan of calcaneum were obtained and pre-operative planning was done. Pre-operative Bohler's Gissane's angles were measured using radiographs and fractures were classified using Sander's classification with the help of a CT-scan. After obtaining informed consent from the patients and ethical committee clearance, the patients were taken up for surgery. After the patient is anaesthetised, the patient is placed in the lateral decubitus position over a radiolucent table with the operative side up. The lower extremities positioned in a scissor-like configuration. Protective padding is placed beneath the contralateral limb to protect the peroneal nerve and a pillow is placed between the legs. A pneumatic thigh tourniquet is used, and the limb is exsanguinated with an Esmarch bandage to provide a dry operative field. The limb is painted and draped till mid-calf region and the fracture is approached with a lateral extensile incision starting 2cm above the tip of the lateral malleolus and just lateral to the Achilles tendon and taking it up to the base of the 5th metatarsal in an L shaped fashion. The knife is taken "straight to bone" at this level, taking care not to bevel the skin. Once the initial incision is made, the corner of the flap is now raised as a subperiosteal, fullthickness flap. One K-wire (1.5mm) is passed in the fibula, talar neck and cuboid each to retract the flap using the "notouch" technique. Fracture reduction and correction of calcaneus varus, height and width were done under direct vision and with the help of fluoroscopy. K wires were used for the stabilization temporary of fracture fragments. **Application** of locking calcaneal compression plate and locking screws is done. Intraoperative radiographic evaluation with image intensifier with lateral, axial and Anteroposterior view. Wound wash was given with normal saline. Wound closed with non-absorbable suture (Ethilon) using Allgower-Donati technique. Bulky cotton dressing is done. Patients were given below- knee slab and limb elevation in the post-op period, till wound healing and suture removal, which was usually done on the 14th day. Ankle range of movements were started at 2nd post-op week. Patients were followed up regularly in OPD at 6wk, 12wk, 24wk and clinical and radiological and assessments were done. Weight-bearing was allowed after 3 months depending upon the fracture union. e-ISSN: 0975-1556, p-ISSN: 2820-2643 Radiological assessment was done by measuring bohler's and gissane's angles, union rate. Functional outcome was measured using American Orthopaedics Foot and Ankle Society (AOFAS) score. A score of 90-100 is taken as an excellent outcome, 75-89 as good, 55-74 as fair and a score less than 50 is considered a poor outcome. The data collected were entered into a Microsoft Excel spreadsheet and analysed using STATA 14 (StataCorp.2015. Stata Statistical Software: Release 14. College Station, TX: StataCorp LP.) ## Results A prospective study was undertaken of 30 patients with intra-articular calcaneal fractures (Sander's type II, III and IV) treated by calcaneal locking compression plate and screws. Results were analysed in terms of functional outcome of a postoperative range of movement after the e-ISSN: 0975-1556, p-ISSN: 2820-2643 complications. union, time for fracture union, early and late postoperative able 1: Patient details | Table 1: Patient details | | | |--------------------------------|------------|--| | Variables | N% | | | Gender | | | | Male | 27 (90) | | | Female | 3 (10) | | | Age groups | | | | 18-30 | 12 (40) | | | 31-40 | 10 (33.34) | | | 41-50 | 5 (16.66) | | | 51-60 | 3 (10) | | | Distribution of sides involved | | | | Right | 18 (60) | | | Left | 12 (40) | | | Mode of injury | | | | Fall from height | 24 (80) | | 6(20) In our study, patients between the ages group 18 yr and 60yr with a mean age of 33.36yr were included. The majority of the patients in the study were males, with 90% of the study population. In this study, 60% **RTA** of the patients had right side involvement and 40% of the patients had left side involvement. The most common mode of injury in the study group was falling from height followed by RTA. Table 2: Distribution types of Sander's classification of fracture in the study population, Time interval between injury to surgery and Distribution of period in weeks for complete radiologic union in patients studied | Sander's type | N% | | |---------------|------------|--| | Type II | 12 (40) | | | Type III | 8 (26.66) | | | Type IV | 10 (33.34) | | | Time interval | | | | 1-5 days | 7 (23.34) | | | 6-10 days | 17 (56.66) | | | 11-14 days | 6 (20) | | | Time in weeks | | | | 10-13 wks | 17 (56.66) | | | 14-16 wks | 8 (26.67) | | | 17-19 wks | 5 (16.67) | | The most common fracture type in our study was Sander's type II, followed by type IV. Type III was the least common. In all the patients included in the study, surgery was delayed until the appearance of wrinkles on the skin to avoid the complication of wound dehiscence and for appropriate wound closure. The number of days from the injury to surgery varied from 4 to 14 days with an average of 7.8 days. The average time period for the radiological union was 13.64 weeks in the study population. Table 3: Distribution of pre and post-operative Bohler's angle and gissane's angle in the study population | Bohler's angle | Pre-operative (%) | Post-operative (%) | |-----------------|-------------------|--------------------| | <10° | 8 (26.67) | 0 | | 10°-20° | 22 (73.34) | 0 | | 20°-30° | 0 | 14 (46.66) | | 30°-40° | 0 | 16 (53.34) | | Mean | 11.75° | 29.67° | | Gissane's angle | ; | | | 110°-120° | 0 | 16 (53.34) | | 120°-130° | 5 (16.66) | 14 (46.66) | | 130°-145° | 16 (53.34) | 0 | | >145° | 9 (30) | 0 | | Mean | 137.06° | 116.7° | About 73.34% of patients had a bohler's angle between 10°-20° and in 26.67% of patients, it was <10° in the pre-operative period, with a mean bohler's angle of 11.75°. Whereas in the post-operative period, 46.66% of patients had a bohler's angle between 200-300 and 53.34% had it between 300-400, with a mean post- operative bohler's angle of 29.67°. The difference between pre-operative and postoperative mean bohler's angle was statistically significant with a p value <0.01. The difference between preoperative post-operative and mean Gissane's angle was statistically significant with a p value <0.01. **Table 4: Functional outcome using AOFAS score** | AOFAS score | N% | |-------------|------------| | Excellent | 5 (16.66) | | Good | 19 (63.34) | | Fair | 5 (16.66) | | Poor | 1 (3.34) | According to AOFAS score, majority of the patients were good followed by excellent and fair. Only 1 patient had poor AOFAS score. Figure 1: Pre-op xray lateral and axial view Shukla et al. International Journal of Pharmaceutical and Clinical Research Figure 2: Postoperative radiographs showing calcaneum fixation with plate ## **Discussion** calcaneal fractures Although are uncommon, comprising approximately 2% of all fractures. [11-13] They constitute about 60% of all tarsal bone fractures.1 Mostly they are due to high-energy axial trauma, mainly due to falls from a height. [11,12,14,15] Intra-articular fractures account for 70% of all calcaneal fractures. They are the most challenging and outcomes are unpredictable. [11] There is no consensus between surgical and conservative treatment in terms outcomes. [12] Out of 30 cases there were 27 males (90%) and 3 females (10%). The mean age of the patients was 33.6 years with ages ranging from 18 years to 60 years. In our study, the mean age of the patients was 33.6 years which was comparable to previous studies done by M.J.Mitchell et al. [16] and Farell et al. [17] who also demonstrated that the fracture was more in the younger age group and the majority of the patients were male. The mode of injury was falling from height in 24 cases and 6 cases had a history of RTA. In our study most common mode of injury was falling from height (80%), followed by RTA (20%). This result was comparable with the results of a study done by M.J.Mitchell et al.16 (fall from height 71.5%). Our study delayed the operative management until the wrinkle sign was positive to prevent wound complications. We operated within the first two weeks of injury, as open reduction internal fixation with more than 3 weeks of delay is not recommended. [18] The mean time duration between injury and surgery in our study was 7.8 days. The treatment of choice for intraarticular calcaneum fractures remains controversial. Surgical treatment was associated with a significant incidence of wound complications, particularly sepsis. [19] However, the conservative treatment also has its share of complications, such as subtalar joint pain, heel peroneal varus and tendon impingement. [20] Sanders confirmed that the learning curve for operative treatment of this fracture is steep. Sanders observed that the clinical results are a surgeon-dependent learning curve and requires 35 to 50 cases or about 2 years' experience. [21,22] If a large defect remains after the procedure, which often is the case, most surgeons recommend using an autogenous iliac crest bone graft; however, if internal fixation is secure and the fracture is stable, the defect may be accepted. A.K. Singh et al. in his study, concluded that Bohler's angle showed improved restoration and the patients returned to full weight-bearing earlier when bone grafting was used in the treatment of intra-articular calcaneal fracture. [23] However, studies by Rammelt et al., [24] and Zhongguo et al., [25] suggested that it is not necessary to implant a bone graft for DIACFs. Surgical treatment of displaced intra-articular calcaneal fractures enables anatomical reduction, and restores the shape, height and alignment. It also aims to reduce the subtalar and calcaneocuboid joints in order to achieve a reduced lateral wall and peroneal tendons. [26] Paley D et al. stated that Bohler's angle is an indirect measurement of both calcaneal height and the arch angle. [27] The Bohler's angle [28], is considered as normal within measurements ranging from 20° to 40°. In this study, the post-operative mean Bohler angle was 29.67 degree. In our study, the time for fracture union showed that the meantime for union among patients was 13.64 ± 2.56 weeks. Biz et al. [29] reported radiological consolidation of calcaneal fractures in an average period of around 3 months (12weeks), which agreed to the findings of our study. In a study on functional outcomes of different modalities of fixation in intra-articular calcaneus fractures by Rajesh V Chawda In this study, outcomes were measured with AOFAS Score. Out of 30 patients 5 patients (16.74%) had excellent (90-100 points), 19 patients (63.34%) had well (75-89 points), 5 patients (16.64%) had fair (50–74 points) and 1 patient (3.34%) had poor outcome (<50points). Biz et al. [30] who also measured outcomes with AOFAS score and he found excellent results in 11 (12.6%) patients, good results in 46 (52.9%) patients, fair results in 26 (29.9%) patients, while 4 (4.6%) patients were graded as failures. [31] The patients developed ankle and foot stiffness as a result of noncompliance for physiotherapy. As per culture and sensitivity, deep wound et al. [30], it was observed that the radiological union appears between 2-3 months. infection with implant was treated removal. wound debridement. and antibiotic Superficial cover. wound infection treated with regular was and appropriate antibiotics. dressings Patients with implant prominence were treated with implant removal after the fracture was united at the final follow up. e-ISSN: 0975-1556, p-ISSN: 2820-2643 ## Conclusion In displaced intra-articular calcaneum fractures, open reduction and internal fixation by extended lateral approach with calcaneum locking plates and screws result in a good number of satisfactory outcomes with very few unsatisfactory results. Hence, it can be a better option of treatment in displaced intra-articular calcaneum fractures. ## References - 1. Nicklebur S, Dixon TB, Probe R. Calcaneus fractures. EMedicine, July 21, 2004. - 2. Dwivedi A, Jian WX, Dwivedi SS, Dwivedi NR, Han W, Peng X. Pilon fracture; an unsolved riddle an updated review. IJCMR. 2017; 4:718-25. - 3. Mitchell MJ, McKinley JC, Robinson CM. The epidemiology of calcaneal fractures. Foot (Edinb). 2009;19(4):19 7-200. - 4. Griffin D, Parsons N, Shaw E, Kulikov Y, Hutchinson C, Thorogood M, Lamb SE. Operative versus non-operative treatment for closed, displaced, intraarticular fractures of the calcaneus: randomised controlled trial. Bmj. 2014 Jul 24:349. - 5. Bajammal S, Tornetta III P, Sanders D, Bhandari M. Displaced intra-articular calcaneal fractures. Journal of orthopaedic trauma. 2005 May 1;19(5): 360-4. - 6. Gougoulias N, Khanna A, McBride DJ, Maffulli N. Management of calcaneal fractures: systematic review of randomized trials. British medical bulletin. 2009 Dec 1;92(1):153-67. - 7. Jiang N, Lin QR, Diao XC, Wu L, Yu B. Surgical versus nonsurgical treatment of displaced intra-articular calcaneal fracture: a meta-analysis of current evidence base. International orthopaedics. 2012 Aug; 36:1615-22. - 8. Zeman P, Zeman J, Matejka J, Koudela K. Long-term results of calcaneal fracture treatment by open reduction and internal fixation using a calcaneal locking compression plate from an extended lateral approach. Acta Chir Orthop Traumatol Cech. 2008;75(6): 457-64. - 9. Susan Ishikawa N. Chapter 88 Fractures and Dislocations of the Foot, Canale & Beaty: Campbell's Operative Orthopaedics, 13th ed.; 4276-4290 - 10. Cotton FJ, Henderson FF. Results of fractures of the oscalcis. Am J Orthop Surg. 14:290. - 11. Dhillon MS, Bali K, Prabhakar S. Controversies in calcaneus fracture management: a systematic review of the literature. Musculoskelet Surg. 2011 Dec 1;95(3):171–81. - 12. Bruce J, Sutherland A. Surgical versus conservative interventions for displaced intra-articular calcaneal fractures. Cochrane Database Syst Rev. 2013 Jan 31;(1):CD008628. - 13. Veltman ES, Doornberg JN, Stufkens SAS, Luitse JSK, van den Bekerom MPJ. Long-term outcomes of 1,730 calcaneal fractures: systematic review of the literature. J Foot Ankle Surg Off Publ Am Coll Foot Ankle Surg. 2013 Aug;52(4):486–90. - 14. Palmersheim K, Hines B, Olsen BL. Calcaneal Fractures: Update on Current Treatments. Clin Podiatr Med Surg. 2012 Apr 1;29(2):205–20. - 15. Pelliccioni AAA, Bittar CK, Zabeu JLA. Surgical treatment of intraarticular calcaneous fractures of sanders' types II and III. Systematic review. Acta Ortop Bras. 2012; 20(1): 39–42. - 16. Mitchell MJ, et al. The epidemiology of calcaneal fractures. The Foot. Dec 2009;19(4):197-200. - 17. O'Farrell DA, O'Byrne JM, McCabe JP, Stephens MM. Fractures of the os calcis: improved results with internal fixation. Injury. 1993 Apr 1;24(4):263-5. - 18. Zwipp H, Rammelt S, Barthel S. Calcaneal fractures-open reduction and internal fixation (ORIF). Injury. 2004;35: SB46-SB54. - 19. Lindsay WRN, Dewar FP. Fractures of the os calcis. Am J Surg. 1958; 95:555. - 20. Myerson M, Quill GE. Late complications of fractures of the calcaneus. BJS (A). 1993;75(3):z31-4 1. - 21. Sanders R. Fractures and fracture-dislocations of the calcaneus. In Surgery of the Foot and Ankle, edited by R Mann and M Coughlin Ed. St Louis, Mosby, 1999;7(2):1422-1464. - 22. Sanders R. Current concepts review-displaced intra-articular fractures of the calcaneus. JBJS. 2000 Feb 1;82(2):225-50. - 23. Singh AK, Vinay K. Surgical treatment of displaced intra-articular calcaneal fractures: is bone grafting necessary? J Orthopaed Traumatol. Dec 1, 2013; 14(4):2990-305. - 24. Rammelt S, Dürr C, Schneiders W. Minimal-invasive osteosynthese von kalkaneusfrakturen. Oper Orthop Traumatol. 2012; 24:383-95. - 25. Zhongguo Gu Shang. A study of 22 displaced intraarticular calcaneal fractures using locking plates with and without bone graft. 2011 Apr;24(4): 3057. - 26. Sanders R, Fortin P, Di Pasquale T, et al. Operative treatment in 120 displaced intraarticular calcaneal fractures. Results using a prognostic computed tomography scan classification. Clin Orthop. 1993, 87-95 - 27. Paley D, Hall H. Intra-articular fractures of the calcaneus. A critical - analysis of results and prognostic factors. J Bone Joint Surg Am. 1993; - 28. Su Y, Chen W, Zhang T, Wu X, Wu Z, Zhang Y. Bohler's angle's role in assessing the injury severity and functional outcome of internal fixation for displaced intra-articular calcaneal fractures: a retrospective study. BMC Surg. 2013; 13:40. 75A:342-354. 29. Biz C, Barison E, Ruggieri P, Iacobellis C. Radiographic and functional outcomes after displaced intra-articular calcaneal fractures: A comparative cohort study among the traditional open technique (ORIF) and percutaneous surgical procedures (PS). J Orthop. e-ISSN: 0975-1556, p-ISSN: 2820-2643 - 30. Chawda RV, Ninama DM, Patel V, Patel J. Functional outcomes of different modalities of fixation in intraarticular calcaneus fractures. National Journal of Clinical Orthopaedics. 2018;2(4):199-204. - 31. Tomasi D., & Webb, S. Human Gastrointestinal Microbiota and Neural Activity: Effects of Probiotics on Mental and GI Health. Journal of Medical Research and Health Sciences, 2020;3(9):1070–1077.