Available online on www.ijpcr.com

International Journal of Pharmaceutical and Clinical Research 2023; 15(10); 1219-1223

Original Research Article

Effect of Provider Communication on Perception of Pain during Intravenous Cannulation: A Double Blinded Randomized Controlled Trail

Divyashri C N¹, Jasvinder Kaur², Shwethapriya Rao³, Shiyad M⁴

¹Assistant Professor, Department of Anaesthesiology, Kasturba Medical College, Manipal, India.
 ²Associate Professor, Department of Anaesthesiology, Kasturba Medical College, Manipal, India.
 ³Associate Professor, Department of Anaesthesiology, Kasturba Medical College, Manipal, India.
 ⁴Assistant Professor, Department of Anaesthesiology, Kasturba Medical College, Manipal, India.

Received: 19-08-2023 / Revised: 23-09-2023 / Accepted: 25-10-2023

Corresponding Author: Divyashri C N

Conflict of interest: Nil

Abstract

Background: Anaesthesiologists utilize communication skills in their day-to-day practice, in order to reduce the pain perception of patients during any invasive procedures like intravenous cannulation. Our study aimed to know the effect of three different types of communication provided by anaesthesiologists on perception of pain (primary outcome) and behavioural /visual discomfort (secondary outcome) during intravenous cannulation.

Methods: About 300 patients were randomly allocated into three groups: Group ST who received the communication that "the intravenous cannula will be placed after giving local anaesthesia and the procedure may sting a bit", Group 2 (NP): 'Nil' pain who received the communication that "the intravenous cannula will be placed after local anaesthesia and it will not be painful", Group 3 (NU): 'Numb' who received the communication that "the intravenous cannula will be placed after local anaesthesia and the skin of your hand will feel numb. Our primary and secondary outcome measures were measured with VAS score and MBPRS score respectively.

Results: Out 300, 100 patients were in 'sting group', 98 patients were in 'no pain group' and 99 patients were in 'numb group'. VAS scores (p=0.549) were not normally distributed, most of the patients perceived as mild to moderate pain and none of them had severe pain. MBPRS scores were obtained for two injections separately and analysed. MBPRS scores obtained during local injection showed p value of 0.826 and i.v. cannulation showed p value of 0.827. Chi-square test was used for both the scores and results were comparable.

Conclusions: The intensity of pain perception and behavioural display of pain during the procedure of intravenous cannulation is similar for patients irrespective of the type of communication.

Keywords: Communication, Perception, Cannulation, Anaesthesiologist.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Communication skills are an important and essential part of anaesthesia practice. [1] More problems and difficulties arise from poor communication than from anything else in all medical and nursing practice. [2]

Perception is an active process of becoming aware and understanding ones environment that is unique to the individual and it is strongly influenced by communication. In order to learn these communication skills and utilize them effectively, it is helpful to understand language structures that can elicit non-volitional subconscious patient responses that might be therapeutic such as anxiolysis. [3] Dirk Varelmann et al found that using gentler, more words improves reassuring the subjective experience during invasive procedures. [4]

Anaesthesiologists utilize communication skills in their day to day practice, in order to reduce pain perception of patients during any invasive procedures like intravenous cannulation (i.v.) which is the most commonly done procedure. Anybody receiving general anaesthesia has to undergo this procedure. Psychological factors affects the pain perception and response to pain. Pain perception during i.v cannulation can be reduced by using topical anesthetics (EMLA cream, Ametopgel), intradermal injection of local anesthetics or inhalational induction. Subcutaneous injections are used for immunizations, administration of drugs such as insulin and heparin and for local anaesthesia. [5] Topical local anaesthetic preparations like EMLA or Ametop gel help in reducing pain of intravenous cannulation in both children and adults. [6,7] But conversely it may not give complete anaesthesia and requires time for its action. [8,9] Another effective alternative to this topical LA is to inject local anaesthetic intradermally or subcutaneously at the site of proposed cannulation. [10] Cannulating with 22 gauge IV cannula is

associated with some degree of discomfort or pain and it has been demonstrated that injecting local anaesthetic causes less pain than cannulation itself. [11] Anticipation of pain may increase a patient's sensitivity to it. Conversely, assurances of 'no pain' may cause the patient to expect more pain. [1]

We planned to study how a patient's perception of pain may be modified by the communication immediately preceding cannulation and the three different types of communications used in our study were positive suggestion (pain/sting), negative suggestion (no pain) and neutral (no reference to pain). Our study aimed to know the effect of three different types of communication provided by anaesthesiologists on perception of pain(primary outcome) and behavioural /visual discomfort(secondary outcome) during intravenous cannulation.

Methodology

The present study was conducted in Anaesthesiology Department, Kasturba Hospital, Manipal after obtaining Institutional Ethical Committee permission. After written and informed patient consent, we recruited 300 patients who were electively posted for surgery where placement of i.v. cannulation was necessary, by randomly allocating patients into these groups with a computer-generated randomization table. Patients included in the study were aged > 18years, alert conscious and cooperative and who could speak English/ kannada. We excluded patients with anticipated difficult i.v. cannulation (burns/trauma/ post chemo therapy), patient's refusal to participate in the study, critically ill patients, patent i.v. cannula in situ, mentally challenged patients and patients with h/o allergy to local anaesthetic. Patients who were included in the study were informed about the need for the study and how different ways of providing information could affect the experience during insertion of cannula to start a drip.

The subject information sheet was provided and the randomization sequence was concealed and sequentially numbered envelope were provided to the operator in each case. We had two observers, observer1 who was blinded to the study took consent and assess visual analogue scale (VAS) score 2 minutes after cannulation. Observer2 who performed the procedure and assessed Modified Behavioural Pain Rating Scale (MBPRS) score while inserting cannula. The three groups and there communications were,

Group ST: Received the communication that "the intravenous cannula will be placed after giving local anaesthesia and the procedure may sting a bit"

Group NP: Received the communication that "the intravenous cannula will be placed after local anaes-thesia and it will not be painful"

Group NU: Received the communication that "the intravenous cannula will be placed after local anaes-thesia and the skin of your hand will feel numb"

Sample size calculation was done based on the pilot study results, which included five patients in each three groups and found to have a VAS score difference of 1. Based on this data, it was found that 100 patients in each group were required to have a power of 80% and with α value of 0.05 at 95% confidence interval for a VAS score difference of 0.75.

All patients were pre medicated with alprazolam 0.25mg if <=50kg, 0.5mg if> 50kg. They were informed during pre-operative assessment about the need for placement of i.v. cannula prior to surgery. Written informed consent was obtained from all the participating patients.

Intravenous cannula was sited only in veins of dorsum of the upper limb. In all the patients studied, 18gauge i.v. cannula was used. A maximum of two attempts at cannulation were permitted. If more than two attempts, patient were excluded from the study. In our study three patients required more than two attempts and were excluded from the study. Observer 2 opened the sealed envelope in the procedure room. The vein on the dorsum of hand was identified by applying tourniquet. The allocated statement to that particular patient was delivered before giving local injection with 0.25ml of 2% lignocaine. I.V cannula was inserted after 30 seconds under sterile technique. Intravenous cannula was firmly secured and fixed and accordingly crystalloids were started. Patients were asked by observer1 to mark the pain they felt during the cannulation procedure, on a Visual Analogue Scale (VAS). VAS score was taken for the highest pain felt, whether it was perceived for subcutaneous local anaesthetic injection or to i.v. cannulation. Assessment of pain using Visual Analogue Scale was done and was graded as follows: No pain- 0, Mild pain ->0 to <4, Moderate pain- 4 to <7, Severe pain- 7 to 10. MBPRS score was additionally used for secondary outcome measures which was assessed by observer2. The severity of the pain was be based on the highest score obtained in any of the visual parameters. MBPRS score was taken separately for both subcutaneous local anaesthetic injection and i.v. cannulation and was graded as follows: score 0- no pain, score -1 -mild to moderate pain score 2- severe pain.

Results

Of the 297 patients, intravenous cannulation was performed successfully in the first attempt in 285 patients and 12 patients required a second attempt. The mean age of the patients in ST group is 44.49 ± 14.13 , NP group is 44.57 ± 15.47 and in NU group is 41.78 ± 14.28 . In the study 62 male and 38 female patients were in ST group, 56 male and 42 female

patients were in NT group, 63 male and 36 female patients were in NU group.

VAS scores in ST group, 4 (4%) had no pain, 86 (86%) had mild pain and 10 (10%) had moderate pain. In NP group 6 (6.12%) had no pain, 77 (78.57%) had mild pain and 15 (16.30%) had moderate pain. In NU group 7 (7%) had no pain, 72 (72.72%) had mild pain and 20 (20.20%) had moderate pain. We used Chi-square test for VAS scores (p= 0.549) which showed results were comparable.

MBPRS scores for local anaesthesia injection, ST group found 51 (51%) patients had no pain, 38 (38%) had mild to moderate pain and 14 (11%) had severe pain. In NP group 44 (44.89%) had no pain, 40 (40.81%) had mild to moderate pain and 14 (14.28%) had severe pain. In NU group 45 (45.45%) had no pain, 40 (40.40%) had mild to moderate pain and 14 (14.14%) had severe pain. Results of MBPRS scores (p value=0.826) were comparable with Chi-square test. MBPRS scores for cannulation were, in ST group 64(64%) had no pain, 34 (34%) had mild-moderate pain and2 (2%) had severe pain. In NP group 58 (59.18%) had no pain, 35 (35.71%) had mild-moderate pain and 5 (5.1%) had severe pain. And in NU group 64 (64.64%) had no pain, 26 (29.29%) had mild-moderate pain and 6 (6.06%) had severe pain. Using Chi-square test results were comparable (p=0.827).

All together if we take, in NP group 4 patients had loud cry and one patient had jerking away of upper limb. In NU group 2 patients had loud cry and one patient had jerking away of the upper limb. None in ST group had behavioural signs.

New edited Discussion

Anaesthesiologist's words lead to subconscious changes in the patient's mind. Patients find themselves in the state of being in 'two minds' about something; being 'besides oneself', out of body experiences; day dreaming kind of altered state of conscious awareness when they present to the operation theatre for anaesthesia and surgery.[3] Whatever techniques of various forms of communication used by the anaesthesiologists have not been taught to them formally, but have been learned instead as a part of the informal or 'tacit' knowledge of anaesthetic practice.

In our study, we chose intravenous cannulation procedure as the pain model as it is the most commonly performed procedure in routine anaesthetic practice. We chose VAS because it is the most commonly used pain scale and gives a very simple assessment of pain. More so it was easily understood by the patients and could communicate to us regarding the severity of pain with the help of this pain scale. The modified behavioural pain rating scale was the modification of behavioural pain rating scale used in children who are unable to communicate and quantify the pain perceived and we wanted to see behavioural response in adults. In our institute we prefer using local infiltration for any cannulation equal or above 18 gauge cannula. In a study conducted by T. Harris et al studied the use of local anaesthetic and factors affecting pain perception for cannulation in the emergency department, showed that use of local anaesthetics before cannulation could reduce the pain felt for cannulation and this study also shows that experience of cannulator, patient characteristics and cannula size does not affect the pain scores. [12] We conducted this study to find out whether communication skills really affect the pain perception of patients who are undergoing cannulation. We did not make out any change in the perception of patients in three different kinds of communication used in the study. Another observation was, majority of the patients felt giving local infiltration using 26 gauge needle was painful than actual cannulation itself. As there was no significant difference in perception of pain in three groups, it requires further study to know any differences present between the different age groups or in the gender groups.

Our study had some limitations. Our study was based on psychological aspects, anxiety status and emotional aspects of the patient. All these factors were subjective to the patient. The second limitation of the study was that the person who performed the intravenous cannulation procedure was not the same to all patients but very well experienced in i.v. cannulation. Even though the sentence communicated by all the persons who performed the procedure was the same, the way in which it was communicated would have been different which again might have an impact on the patient's perception of pain. [13] Our sample size was inadequate to study the differences in pain perception between different age groups and between male and female gender. Another limitation was that we used local anaesthetic injection before cannulation, so most of the patients felt local injection was painful than cannulation itself. But using local anaesthetic injection was necessary as canuula we used was 18 gauge and it was wide bore cannula, so we thought it is ethical to use local anaesthetic and also our study was on the effect of communication on pain perception.

Finally we could get the information by doing the study is that the intensity of pain perceived during the procedure of cannulation is similar for patients irrespective of the typeof communication provided by the operator and behavioural display of pain for both local anaesthetic injection and intravenous cannulation is not influenced by the type of communication.

	Sting Group	Nil Pain	Numb Group	Total	P value
		Group			
No pain(0)	5 (4)	5 (6)	4(7)	14(17)	0.549
	(4%)	(6.12%)	(7%)	(5.72%)	
Mild pain	98 (86)	68(77)	67(72)	233(235)	
(>0-<4)	(86%)	(78.57%)	(72.72%)	(79.12%)	
Moderate pain	16 (10)	14(15)	20(20)	50(45)	
(4 - <7)	(10%)	(15.30%)	(20.20%)	(15.15%)	
Severe pain (7-10)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
Total	119 (100)	87 (98))	91(99)	297	
	(100%)	(100%)	(100%)	(100%)	

Table 1:	VAS Sco	re and Comn	nunication
----------	---------	-------------	------------

Table 1: VAS Score was grouped into four categories - no pain (0), mild pain(>0 - <4), moderate pain(4 - <7) and severe pain(7 - 10). Most of the patients in all the groups perceived mild pain to moderate pain during intravenous cannulation procedure. No patient experienced severe pain.Using Chi-square test, it was found that there was no statistically significant difference in VAS scores between the groups.

 Table 2: Comparison of Modified Behavioural Pain Rating Scale grading during Local Anaesthetic Injection

		Injection			
	Sting Group	Nil Pain Group	Numb Group	Total	p value
No pain (0)	61(51)	38(44)	41(45)	140(140)	0.826
	(51%)	(44.89%)	(45.45%)	(47.13%)	
Mild - moderate pain	44(38)	36(40)	38(40)	118(118)	
(1)	(38%)	(40.81%)	(40.40%)	(39.73%)	
Severe pain (2)	14(11)	13(14)	12(14)	39	
	(11%)	(14.28%)	(14.14%)	(13.13%)	
Total	119(100)	87(98)	91(99)	297	
	(100%)	(100%)	(100%)	(100%)	

Table 2: Illustrates comparison of Modified Behavioural Pain Rating Scale (MBPRS) while injecting local anaesthesia and three different types of communication. The observed parameters during intravenous cannulation procedure were graded as no pain (0), mild-moderate pain (1) and severe pain (2). A total of 140 (47.13%) patients had no pain, 118 (39.73%) patients had mild-moderate pain and 39 (13.13%) patients had severe pain. Most of the patients in all the three groups had MBPRS score of '0' during injection of local anaesthetic. Using Chisquare test it was found that MBPRS grading during local anaesthetic injection was comparable between the three groups.

Table 3: Modified Behav	vioural Pain Rat	ting Scale (MBI	PRS) grading du	uring intravenous cannulation

	Sting Group	Nil Pain	Numb	Total	p value
		Group	Group		
No pain (0)	74(64)	51(58)	60(64)	185(186)	0.827
	(64%)	(59.18%)	(64.64%)	(62.62%)	
Mild-Moderate pain (1)	40(34)	32(35)	26(29)	98(98)	
	(34%)	(35.71%)	(29.29%)	(33%)	
Severe pain (2)	5(2) (2%)	4(5) (5.1%)	5(6) (6.06%)	14(13) (4.37%)	
Total	119(100)	87(98)	91(99)	297	
	(100%)	(100%)	(100%)	(100%)	

Table 3: Compares the MBPRS grading between the groups while inserting intravenous cannula. Among the 297 patients, 185 (62.3%) patients had no pain, 98 (33%) patients had mild-moderate pain and 14 (4.7%) patients had severe pain. Using chi-square test it was found that there was no statistically significant difference in the MBPRS score between the three groups.

References

- 1. J Dutt- Gupta, T. B own and A. M Cyna. Effect of communication on pain during intravenous cannulation: a randomized controlled trial. Br J Anaesth 2007;99(6):871-5.
- 2. Hjorleifsdottir E, Carter D E. Communicating with terminally ill cancer patients and their families. Nurse Educ Today. 2000; 646-653.

- 3. Allan M Cyna, Marion I Andrew, Communication Skills for Anaesthetists. Australian Anaesthesia. 2007;95-100.
- Dirk Varelmann, Carlo Pancaro, Eric C. Cappiello, and William R. Camann. Nocebo-Induced Hyperalgesia During Local Anesthetic Injection. Anaesthia and Analgesia. 2010;110 (3):868-870.
- J A Cooper, L M Bromley, A P Baranowski and S G E Barker. Evaluation of needle-free injection system for local anaesthesia prior to venous cannulation. Anaesthesia. 2000; 55:24 7-250.
- Maunuksela E-L, Korpela R. Double-Blind Evaluation of A Lignocaine-Prilocaine Cream (Emla) In Children.Br J Anaesth. 1986;58(11): 1242–5.
- Vaghadia H, Al-Ahdal O A, Nevin K. EMLA patch for intravenous cannulation in adult surgical out patients. Can J Anaesth. 1997;44:798-802.
- McCafferty D F, Woolfson A D, Boston V. In vivo assessment of percutaneous local anaesthetic preparations. Br J Anaesth 1989;62:17-21

- Lowson R A, Smart N G, Gudgeon A C, Morton N S. Evaluation of an Amethocaine gel preparation for percutaneous analgesics before venous cannulation in children. Br J Anaesth 1995;75:282-5.
- Langham B T, Harrison D A. Local anaesthetic: does it really reduce the pain of insertion of all sizes of venous cannulation? Anaesthesia. 1992;47:890-1.
- 11. Harrison N, Langham B T, Bogod D G. Appropriate use of local anaesthetic for venous cannulation. Anaesthesia 1992;47:210-12.
- T Harris, P A Cameron, AUgoni. The use of precannulation local anaesthetic and factors affecting pain perception in the emergency department setting, Emerg Med J 2008;18;175-177.
- 13. Kállai I, Barke A, Voss U. The effects of experimenter characteristics on pain reports in women and men. Pain. 2004;112(1):142–7.