Available online on www.ijpcr.com

International Journal of Pharmaceutical and Clinical Research 2023; 15(3); 1518-1527

Original Research Article

Prevalence of Clinically and Biochemically Diagnosed Myopathy in Hypothyroid Patients

Swathy Krishnan A.R.¹, Padmakumar Rajasekhara Pillai², Sajeesh K.³

¹Senior Resident, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, Kerala, India.

²Associate Professor, Department of General Medicine, Government Medical College, Trivandrum, Kerala, India.

³Assistant Professor, Department of General Medicine, Government Medical College Kollam, Kerala, India.

Received: 25-01-2023 / Revised: 25-02-2023 / Accepted: 21-03-2023 Corresponding author: Dr. Sajeesh K. Conflict of interest: Nil

Abstract

Background: In this study, we wanted to estimate the proportion of myopathy among hypothyroid patients, assess the correlation of hypothyroid myopathy with Serum TSH levels, and study the association of anti-TPO antibody with hypothyroid myopathy.

Methods: This was a hospital-based cross-sectional study conducted among 100 patients who presented with hypothyroidism to the Thyroid Clinic, Department of Internal Medicine, Government Medical College, Thiruvananthapuram, for one year, after obtaining clearance from the institutional ethics committee and written informed consent from the study participants.

Results: Hypertension has got a statistically significant relation with hypothyroid myopathy (p=0.013). Increased sensitivity to cold (p<0.001) and depression (p=0.004) when compared to other symptoms of hypothyroidism has got significance in hypothyroid myopathy. Proximal "Limb-Girdle" weakness of upper limbs is much more common in hypothyroid myopathy as per the study (p<0.001). Among the serum muscle enzymes studied, there exists a statistically significant relation between S. CPK (p<0.001) and S. LDH (p=0.029) with hypothyroid myopathy. Urine myoglobin has a statistically significant relation with hypothyroid myopathy (p<0.001). There is a statistically significant relation between anti-TPO and hypothyroid myopathy in the study (p<0.001). Anti-TPO and S. CPK have a statistically significant linear relationship (r=0.812, p<0.001) in the study.

Conclusion: The prevalence of myopathy in overt hypothyroidism is 69% in the study. Serum TSH levels and serum muscle enzymes CPK, LDH, and urine myoglobin have a significant correlation with hypothyroid myopathy. Anti-TPO has a significant relation with hypothyroid myopathy, and it has a significant positive linear relationship with CPK values. **Keywords**: Hypothyroid Myopathy, S.TSH, S. CPK, S. LDH, Urine Myoglobin, Anti-TPO.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Hypothyroidism is an endocrine disorder which affects up to 5% of the general population. Primary hypothyroidism constitutes over 99% of affected individuals. The most common cause of all thyroid disorders worldwide, including hypothyroidism is environmental iodine deficiency. Hashimoto's disease (chronic autoimmune thyroiditis) is the most common cause of thyroid failure in areas sufficiency. The diagnosis of of hvpothvroidism overt as primary hypothyroidism is by a serum thyroidstimulating hormone (TSH) concentration above and thyroxine concentration below the normal reference range. Symptoms of hypothyroidism are non-specific. It includes mild to moderate weight gain, fatigue, poor concentration, depression, menstrual irregularities. and The consequences of untreated or under-treated hypothyroidism include cardiovascular disease and increased mortality. [1] Myopathies are disorders affecting the channel, structure or metabolism of skeletal muscle. [2] Muscle weakness, aches and cramps, stiffness and delayed tendon jerk relaxation are the usual of hypothyroid-associated features myopathy. [3] Possible mechanisms for myopathy seen in hypothyroidism include an autoimmune reaction affecting the muscle, infiltration by "myxedema", or a disorder of the muscle membrane. Thyroid deficiency likely affects muscle cells Muscular directly. hypertrophy with muscle stiffness in hypothyroidism is seen in less than 10% of cases. [4] Serum CPK activity is frequently elevated in patients with hypothyroidism. In most cases, the associated muscle disease is mild. Rarely, hypothyroidism is associated with severe skeletal muscle affection and rhabdomyolysis. [5,6] CPK elevation may be due to direct cell damage, down regulation of the cellular metabolism or due to а reversible defect in glycogenolysis. [7-9] There are indications that the severitv of hypothyroidism is correlated with the degree of CPK elevation, [9] but it is not known if the severity of the symptoms correlates with the degree of CPK elevation. Hashimoto's thyroiditis is an autoimmune disease characterized by the destruction of thyroid cells by cell and antibody-mediated immune processes. It contributes to the most common cause of

hypothyroidism in developed countries. Raised thyroid-stimulating hormone (TSH) and low free thyroxine (FT4) levels, along with increased antithyroid peroxidase (TPO) antibodies are the common lab findings. Fatigue, exertional dyspnoea, and exercise intolerance are mostly associated with a combination of limited pulmonary and cardiac reserve. In addition to that decreased muscle strength or increased fatigue muscle will be present. Biochemical changes in this group are as follows: Diminished fatty acid mobilization, utilization increased of glycogen stores, and decreased muscle oxidation of pyruvate and palmitate. Muscle weakness and myopathy are important features. [10]

Aims and Objectives

- To estimate the prevalence of clinically and biochemically diagnosed myopathy among hypothyroid patients attending the Thyroid Clinic of Govt. Medical College, Thiruvananthapuram.
- To compare the clinical and biochemical parameters (TSH, FT4, CPK, LDH, SGOT, urine myoglobin and anti-TPO) among hypothyroid patients with and without myopathy.
- To study the relation of anti-TPO antibody with hypothyroid myopathy.

Methods

This was a hospital-based cross-sectional study conducted among 100 patients who presented with hypothyroidism to the Thyroid Clinic, Department of Internal Medicine, Government Medical College, Thiruvananthapuram, for one year, after obtaining clearance from the institutional ethics committee and written informed consent from the study participants. **Inclusion Criteria**

All patients with hypothyroidism - S. TSH > 10 mIU/L; not on treatment.

Exclusion Criteria

• Patients who were not consenting to the study.

- Patients without hypothyroidism.
- Subclinical hypothyroidism, Druginduced or Secondary Hypothyroidism.
- Those taking Statins, Alcohol, Corticosteroids, Local injections of narcotics, Colchicine, and Chloroquine.
- Any endocrine disorder other than hypothyroidism.
- Recent tropical fever or electrolyte imbalance.

Sample Size

Calculated using the formula.

 $N = [(Z_{1-\alpha/2})^2 x P x Q] / d^2$

Where,

 $Z_{1-\alpha/2} = 1.96$ at a 5 % level of significance

P = Proportion of clinically diagnosed myopathy = 60%

Q = 100 - P = 40%d = 20% of P

So, N = $(1.96)^2 x 60 x 40 / (20\% \text{ of } 60)^2$

Study Procedure

After obtaining clearance from the institutional ethics committee, all consecutive cases that satisfied the inclusion criteria and consent to take part in the study were recruited.

A structured Proforma was used to collect relevant history, and physical examination and 5ml of the plain blood sample was collected for the investigations: S.CPK, S.LDH, SGOT, ANTI-TPO and 5ml of a urine sample for urine myoglobin levels and sent to biochemistry lab for estimation as follows:

Analyte	Sample	Method	Instrument			
тен	Sorum	Access Hypersensitive hTSH				
1511	Serum	Assay	Beckman Access 2			
FT4	Serum	Access Free T4 assay	Immunoassay Analyzer			
Anti-TPO	Serum	Access TPO antibody assay				
СРК	Serum	Enzymatic Colorimetry	Pastrman Caultan AU			
LDH	Serum	Enzymatic Colorimetry	Beckman Counter AU			
SGOT	Serum	Enzymatic Colorimetry	080			
Muaglahin	Lining	Chemiluminescent Microparticle	A rehitest stat			
wyogiobin	Unne	Immunoassay	Architect stat			

In this study, all patients recruited were having Overt Hypothyroidism with S. TSH levels > 10mIU/L with a subnormal FT4 according to ATA/AACE Guidelines for Hypothyroidism. [11] The clinical and biochemical diagnosis of myopathy was then established in hypothyroid subjects using the criteria mentioned in the Muscle diseases chapter of Continuum, American Academy of Neurology. [12]

The proportion of myopathy in hypothyroidism was then assessed and the lab parameters were compared in those with and without myopathy.

Statistical Methods

Data were entered into an excel sheet. Data analysis was done using IBM SPSS software version 26. Categorical variables were expressed as proportions and quantitative variables as mean and deviation. standard The association between categorical variables was tested using the Chi-Square test. P<0.05 was considered statistically significant. Other statistical tests used were the Mann-Whitney U test and Pearson's Correlation.

Results

Table 1									
		Hypothyroid Myon othy		То	χ2	df	р		
		Myopathy		tal					
		Present	Absent						
Hypertensio	Present	49	14	63	6.133	1	0.01		
n	Absent	20	17	37			3		
Dyslipidemi	Present	20	4	24	3.033	1	0.08		
а	Absent	49	27	76			2		
	Comorbidit	<u>ies and myopa</u>	thy in the stu	idy pop	ulation				
Symptoma	tology	Hypothy	roid Myopa	thy	χ2	df	р		
		Present	Abser	nt					
Easy fatigability	Present	57	23		0.947	1	0.331		
	Absent	12	8						
Increased	Present	43	6		15.8	1	< 0.00		
sensitivity to	Absent	26	25				1		
cold									
Depression	Present	39	8		8.101	1	0.004		
	Absent	30	23						
Anorexia	Present	33	10		2.115	1	0.146		
	Absent	36	21						
Weight gain	Present	21	5		2.275	1	0.131		
	Absent	48	26						
Constipation	Present	26	14		0.499	1	0.480		
	Absent	43	17						
Impaired	Present	1	1		0.334	1	0.557		
memory	Absent	68	30						
	Syn	ptoms of hype	othyroidism (and my	opathy				
		Hypothy	roid Myopa	thy	χ2	df	Р		
		Present	Abser	nt					
Swelling of	f Present	25	15		1.317	1	0.251		
limbs/face	Absent	44	16						
Sluggish ankle	e Present	12	3		0.998	1	0.318		
jerk	Absent	57	28						
Dry/Coarse skin	Present	8	2		0.629	1	0.428		
	Absent	61	29						
Hoarseness of	f Present	10	8		1.855	1	0.173		
voice	Absent	59	23						
Goitre	Present	11	1		3.275	1	0.070		
	Absent	58	30						
Bradycardia	Present	5	0		2.365	1	0.124		
-	Absent	64	31						
Macroglossia	Present	2	2		0.703	1	0.402		
_	Absent	67	29						
Periorbital	Present	20	9		< 0.001	1	0.996		
puffiness	Absent	49	22		1				
Non pitting ede	Present	23	12		0.272	1	0.602		
ma(Myxedema)	Absent	46	19		1				
Signs of Hypothyroidism and Myopathy									

Among the comorbidities studied. hypertension had a statistically significant with hypothyroid myopathy relation (p=0.013).

There exists a statistically significant relationship between increased sensitivity to cold (p < 0.001) and depression (p=0.004) to hypothyroid myopathy when compared to other symptoms of hypothyroidism. Easy fatigability, anorexia, weight gain, constipation and impaired memory were the other symptoms considered in the study.

There exists no statistically significant relationship between any of the hypothyroid signs with respect to hypothyroid myopathy.

Table 2													
Hypothyroid Myopathy		Lower limb		Upper		N	one	Total	χ2		df	р	
					Li	Limb							
Preser	nt		9		60		0		69	95.79	92	2	< 0.001
Absen	t		1		0		30		31				
Total			10		60		30		100				
		Li	imb predo	minan	ce in l	hypothy	roia	l myo	pathy				
	Hypothyroid	Ν	Mean	St	d.	Std.		Mear	n Sur	n of		U	р
	Myopathy			Devia	ation	Error	•	Rank	K Ra	nks			
						Mean	1						
TSH	Present	69	18.88	11.23	7	1.352		57.14	3943	.00	61	1.0	0.001
	Absent	31	13.35	3.123		0.561		35.71	1107	.00			
		S	erum TSF	H levels	s and h	ypothy	roid	l myo	pathy				
	Hypothyroid	Ν	Mean	St	d.	Std.		Mear	n Sum	of	ι	J	р
	Myopathy			Devia	ation	Error	•	Rank	a Ran	ks			
						Mean	l						
CPK	Present	69	883.58	731.4	96	88.062	2 (<u>64.2</u> 2	4431	.50	122.	5	< 0.001
	Absent	31	117.42	89.20	8	16.022	2	19.95	618.5	50			
		S	erum CPI	K levels	s and h	ypothy	roia	l myo	pathy				

There exists a statistically significant relationship between upper limb weakness and hypothyroid myopathy (p<0.001). Proximal myopathy can be considered a classical symptom of patients with hypothyroid myopathy. Since the values of biochemical parameters studied didn't follow a normal distribution, the statistical test used for analysis was the Mann-Whitney U test (non-parametric), depicted as U in the table along with the level of significance (p). The mean rank and sum

of ranks was estimated for analysis. There exists a statistically significant relation between S.TSH levels and hypothyroid myopathy. (p=0.001)

Among the serum muscle enzymes studied, the most statistically significant relationship was for S. CPK (p<0.001) with hypothyroid myopathy. The mean CPK value in those with hypothyroid myopathy was 883.58 which is 7.5 times higher than that of those without hypothyroid myopathy (117.42).

I able 3									
	Hypothyroid Myopathy	N	Mean	Std. Deviation	Std. Error Mean	Mean Rank	Sum of Ranks	U	р
ווחו	Present	69	357.43	129.250	15.560	54.75	3778.00	7760	0.020
LDI	Absent	31	301.26	79.550	14.288	41.03	1272.00	//0.0	0.029
Serum LDH levels and hypothyroid myopathy									

T	ab	le	3	

	Hypothyroid Myopathy	Ν	Mean	Std. Deviation	Std. Error Mean	Mean Rank	Sum of Ranks	U	р
U.	Present	69	2.72	5.283	0.636	59.44	4101.50	152 5	~0.001
MYOGLOBIN	Absent	31	0.30	0.114	0.020	30.60	948.50	452.5<	~0.001
Urine myoglob	oin levels and	hyp	othyroi	d myopathy	,				
	Hypothyroid Myopathy	N	Mean	Std. Deviation	Std. Error Mean	Mean Rank	Sum of Ranks	U	р
ANTI TDO	Present	69	254.62	328.276	39.520	57.67	3979.00	575 0	~0.001
ANTITO	Absent	31	57.45	73.430	13.188	34.55	1071.00	575.0	~0.001
	Serum Anti TPO levels and hypothyroid myopathy								

S. LDH values were elevated in those with hypothyroid myopathy and had got a statistical significance (P=0.029). Urine myoglobin had a statistically significant relation with hypothyroid myopathy (P<0.001). The mean value of anti-TPO in myopathic patients was 254.62 which had got a statistically significant relation with hypothyroid myopathy in the study. (P<0.001).

Correlations								
CPK ANTI TPO								
	Pearson Correlation	1	0.812**					
СРК	Sig. (2-tailed)		0.000					
	Ν	100	100					
	Pearson Correlation	0.812**	1					
Anti TPO	Sig. (2-tailed)	0.000						
	Ν	100	100					
**. Correlation is significant at the 0.01 level (2-tailed).								

Figure 1: Scatter PLOT – Anti-TPO with CPK

International Journal of Pharmaceutical and Clinical Research

ANTI-TPO and S. CPK have a statistically significant linear relationship (r=0.812, p<0.001). The direction of the relationship is positive. As ANTI-TPO increase, S.CPK values also increase. The magnitude or strength of association is strong as $R^2 = 0.660$.

Correlations						
		TSH	СРК			
TSH	Pearson Correlation	1	.557**			
l	Sig. (2-tailed)		.000			
	Ν	100	100			
СРК	Pearson Correlation	.557**	1			
l	Sig. (2-tailed)	.000				
l	Ν	100	100			
** 0	Let's a 's a 's a 'f' a sub state 0 01 1	(2 + 1)				

 Table 5: Correlation Between S. TSH and S. CPK

**. Correlation is significant at the 0.01 level (2-tailed).

Figure 2: Scatter Plot – S. TSH with CPK

S. TSH and S. CPK have a statistically significant linear relationship (r=0.557, p<0.001). The direction of the relationship is positive. As S.TSH increase, S.CPK values also increase. The magnitude or strength of the association is strong as $R^2 = 0.310$

Discussion

Out of the 100 patients enrolled in the study, the majority (39%) were in the age group 51-60 years followed by 30% in the age group 31-40. There is no statistically significant relation for hypothyroid myopathy in any age group (p 0.073)

comparable to a previous study by Astrom et al. [13] Among the 100 patients enrolled in the study, 76 were females and 24 were males. Hence the proportion of hypothyroid subjects with myopathic symptoms is predominantly females. These findings were comparable to the previous study by Fariduddin and Bansal. [14]

While assessing the comorbidities of the subjects, hypertension has got a statistically significant relation with hypothyroid myopathy (p=0.013). But Anandhasayanam et al [15] found that

dyslipidemia was the major comorbidity associated with hypertension. Alcoholism, smoking, and other habits have no statistical significance with respect to hypothyroid myopathy in the study.

While analysing the presenting symptoms of hypothyroidism, the most common symptoms are easy fatigability, increased sensitivity to colds, depression and weight gain. This is comparable to a previous study by El-Shafie [16] where all these symptoms of hypothyroidism were noted and there was no statistical relation for any of the symptoms. In contrast to these observations by El-Shafie, [16] in this study there exists a statistically significant relationship between increased sensitivity (p<0.001) and depression cold to (p=0.004) to hypothyroid myopathy when to symptoms compared other of hypothyroidism.

Clinical signs of hypothyroidism were studied and most of the patients didn't have any of the expected signs like dry/coarse skin, hoarseness of voice, goitre, bradycardia, macroglossia, periorbital puffiness and myxedema. These findings were comparable to Gaitan and Cooper's. [17]

On analysing the clinical profile of hypothyroid myopathy, there is no statistically significant age predilection for muscle symptoms in patients with hypothyroidism according to the study. This finding is comparable to Fariduddin and Bansal. [13] Most patients had muscle aches and pains along with stiffness rather than any of these alone. Joint symptoms were less predominant in patients with hypothyroid myopathy as per the study. A similar observation is also described by Golding. [18] It is worth mentioning that on observing the pattern of myopathy, Proximal "Limb-Girdle" weakness of upper limbs is much more common in hypothyroid myopathy as per the study (p<0.001). This finding is comparable to Barohn et al, [2] who also stated that the distal muscles are usually involved, but to

a much lesser extent. This pattern of weakness is seen in most hereditary and acquired myopathies and therefore, is the least specific in arriving at a particular diagnosis.

About 40% of the study population was overweight and 31% were obese. This accounts for 71% of the study population. The study shows a statistically significant relation between S. TSH levels with the BMI of the patients (p<0.001). This finding is comparable to the study by Sanyal and Ray Chaudhuri. [19]

Laboratory parameters were done in the subjects to confirm study overt hypothyroidism with S. TSH and FT4 levels. Serum muscle markers done included S. CPK, S. LDH and SGOT. In addition, myoglobin levels in the urine sample are estimated to assess the presence of myoglobinuria in patients with hypothyroid myopathy. Also, ANTI-TPO levels were estimated to assess the prevalence of autoimmune thyroid illness among the subjects. A statistically significant relationship was noted between S. TSH levels and hypothyroid myopathy in the study (p=0.001). S. TSH and S. CPK have a statistically significant linear relationship (r=0.557, P<0.001). The direction of the relationship is positive. As S.TSH increase, S.CPK values also increase. The magnitude or strength of association is strong as R2 = 0.310. This observation is comparable to McKeran et al, [20] who proved the same relation by performing muscle biopsies before and after treatment with L-Thyroxine in hypothyroid myopathy patients. FT4 has no statistically significant relationship for those with hypothyroid myopathy. Among the serum muscle enzymes studied, there exists a statistically significant relation between S. CPK (p<0.001) and S. LDH (p=0.029) with hypothyroid myopathy. These findings are comparable to a previous study by Giampietro et al. [21] SGOT has no statistically significant relationship for those with hypothyroid myopathy in the study. Urine myoglobin has a statistically significant relation with hypothyroid myopathy (p<0.001). This observation is comparable to Nikolaidou et al, [22] in which they substantiate rhabdomyolysis secondary to Hashimoto's thyroiditis resulting in hypothyroidism and myopathy thereby elevating S. CPK and urine myoglobin.

There is a statistically significant relation between anti-TPO and hypothyroid myopathy in the study (p<0.001). It is comparable to the study by Rodolico et al, patients referred where [23] with complaints of muscular fatigability. myalgia, cramps, or proximal weakness were followed up. Laboratory investigations showed that all patients had hypothyroidism due to Hashimoto's thyroiditis (atrophic variant in 9/10). Classic symptoms/signs of hypothyroidism such as lethargy, constipation, cold intolerance, myxedematous facies, and/or bradycardia were absent. Muscular complaints improved greatly and then disappeared after substitutive levothyroxine treatment.

ANTI-TPO and S. CPK have a statistically significant linear relationship (r=0.812, p<0.001) in the study. The direction of the relationship is positive. As ANTI-TPO increase, S.CPK values also increase. The magnitude or strength of association is strong as $R^2 = 0.660$. This observation is comparable to Leonardi et al. [24]

Conclusion

Increased sensitivity to cold and depression are the two common symptoms hypothyroid present myopathy. in Proximal "Limb-Girdle" pattern weakness of upper limbs is much more common in hypothyroid myopathy. Serum TSH levels and Serum muscle enzymes CPK, LDH, and urine myoglobin have a significant relationship with hypothyroid myopathy.

Anti-TPO has a significant relationship with hypothyroid myopathy, strongly suggesting an autoimmune aetiology. AntiTPO has a significant positive linear relationship with CPK values, hence imparting the need for testing it in hypothyroid patients with symptoms of myopathy.

References

- Chiovato L, Magri F, Carlé A. Hypothyroidism in context: where we've been and where we're going. Adv Ther. 2019;36(Suppl 2):47-58.
- Barohn RJ, Dimachkie MM, Jackson CE. A pattern recognition approach to the patient with a suspected myopathy. Neurol Clin. 2014;32(3):569-93.
- Madhu SV, Jain R, Kant S, Prakash V, Kumar V. Myopathy presenting as a sole manifestation of hypothyroidism. J Assoc Physicians India. 2010; 58: 569-70.
- 4. Achappa B, Madi D. Hoffmann's syndrome- a rare form of hypothyroid myopathy. J Clin Diagn Res 2017; 11(5): OL01-2.
- Ciompi ML, Zuccotti M, Bazzichi L, Puccetti L. Polymyositis-like syndrome in hypothyroidism: report of two cases. Thyroidology. 1994;6(1):33-6.
- Lee YG, Park W, Kim SH, Yun SP, Jeong H, Kim HJ, Yang DH. A case of rhabdomyolysis associated with use of a pneumatic tourniquet during arthroscopic knee surgery. Korean J Intern Med. 2010;25(1):105-9.
- Burnett JR, Crooke MJ, Delahunt JW, Feek CM. Serum enzymes in hypothyroidism. N Z Med .J 1994; 107 (985):355-6.
- Riggs JE. Acute exertional rhabdomyolysis in hypothyroidism: the result of a reversible defect in glycogenolysis? Mil Med. 1990; 155 (4):171-2.
- 9. Hekimsoy Z, Oktem IK. Serum creatine kinase levels in overt and subclinical hypothyroidism. Endocrine Research. 2005;31(3):171-5.
- 10. Mincer DL, Jialal I. Hashimoto Thyroiditis. In: Stat Pearls. Stat Pearls

Publishing: Treasure Island (FL), 2020. http://www.ncbi.nlm.nih.gov/books/N

- http://www.ncbi.nlm.nih.gov/books/N BK459262/
- 11. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid. 2014;24(12):1670-751.
- 12. Jackson CE. A clinical approach to the patient with suspected myopathy. Continuum (Minneapolis, Minn). 2006; 12:13-32.
- 13. Astrom KE, Kugelberg E, Muller R. Hypothyroid myopathy. Arch Neurol. 1961; 5: 472–482.
- 14. Fariduddin MM, Bansal N. Hypothyroid Myopathy. In: StatPearls. StatPearls Publishing: Treasure Island (FL), 2020. http://www.ncbi.nlm.nih. gov/books/NBK519513/
- 15. Anandhasayanam A, Arivudainambi T, Kannan S, Chander JS. Prevalence of hypothyroidism and its co-morbidities in relation to the causes and risk factors in patients undergoing levothyroxine therapy. International Journal of Pharmaceutical Sciences and Research. 2016;7(3):1251-57.
- 16. El-Shafie KT. Clinical presentation of hypothyroidism. J Family Community Med 2003;10(1):55-8.
- 17. Gaitan E, Cooper DS. Primary hypothyroidism. Curr Ther Endocrinol Metab 1997; 6:94-8.

- 18. Golding DN. The musculo-skeletal features of hypothyroidism. Postgrad Med J. 1971;47(551):611-4.
- Sanyal D, Raychaudhuri M. Hypothyroidism and obesity: an intriguing link. Indian J Endocrinol Metab. 2016;20(4):554-7.
- McKeran RO, Slavin G, Ward P, Paul E, Mair WG. Hypothyroid myopathy. A clinical and pathologaical study. J Pathol. 1980;132(1):35-54.
- 21. Giampietro O, Clerico A, Buzzigoli G, Chicca MGD, Boni C, Carpi A. Detection of hypothyroid myopathy by measurement of various serum muscle markers – myoglobin, creatine kinase, lactate dehydrogenase and their isoenzymes. HRP. 1984;19(4):232-42.
- 22. Nikolaidou C, Gouridou E, Ilonidis G, Boudouris G. Acute renal dysfunction in a patient presenting with rhabdomyolysis due to Hypothy roidism attributed to Hashimoto's Disease. Hippokratia. 2010;14(4):281-3.
- 23. Rodolico C, Toscano A, Benvenga S, Mazzeo A, Bartolone S, Bartolone L, et al. Myopathy as the persistently isolated symptomatology of primary autoimmune hypothyroidism. Thyroid. 1998;8(11):1033-8.
- 24. Leonardi A, Penta L, Cofini M, Lanciotti L, Principi N, Esposito S. Rhabdomyolysis in a young girl with Van Wyk-Grumbach syndrome due to severe hashimoto thyroiditis. Int J Environ Res Public Health. 2018;15 (44):704.