e-ISSN: 0975-1556, p-ISSN:2820-2643

Available online on www.ijpcr.com

International Journal of Pharmaceutical and Clinical Research 2023; 15(5); 1400-1404

Original Research Article

Advancement of Oral & Maxillofacial Surgery with CBCT

Santosh Mishra¹, Rahul Mishra², Madhuri Shukla³, Varun Arya⁴

1,2,3,4 Dept., of Radiodigonosis, SS Medical College Rewa MP. 486001

Received: 06-04-2023 / Revised: 02-05-2023 / Accepted: 24-05-2023

Corresponding author: Dr Rahul Mishra

Conflict of interest: Nil

Abstract:

Cone Beam Computed Tomography (CBCT) is a most valuable imaging technique used in oral and maxillofacial surgery. The introduction of CBCT for imaging the oral and maxillofacial region, holds a major change from two dimensional to three-dimensional approach. CBCT provides a complete 3D view of the oral and maxillofacial structures with high resolution which helps for accurate diagnosis, treatment planning and postoperative outcomes compared to conventional 2D images. Radiation exposure to the patient is very low in CBCT. The main clinical applications of CBCT are in oral and maxillofacial surgery, orthodontics, periodontics and in endodontics. The aim of this article is to review on the advantages, disadvantages and clinical applications of CBCT in the oral& maxillofacial surgery.

Keywords: Cone-beam computed tomography, resolution, 3D imaging, oral and maxillofacial surgery, maxillofacial imaging, radiography, Oral surgery.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Accurate diagnostic imaging is a key point for diagnosis and treatment planning. Since the use of CT in the 1970s, it has become one of the most commonly used imaging methods and made a revolution in diagnostic imaging [1]. 3D provided by CT technology gives the oral maxillofacial images without and superimposition and distortion. Compared conventional 2D procedures, involves higher radiation doses [2]. CBCT for maxillofacial imaging was invented to curtail the limitations of conventional CT [3]. Maxillofacial surgeons frequently operate in areas of the face and jaws. While surgery there are risks of damage to critical structures, such as nerves and blood vessels. Complex surgical procedures, such as orthognathic surgery, oncology surgery and treatment of trauma requires proper preoperative planning. Therefore imaging modalities that provides detailed information, accurate diagnosis and good clinical outcomes should be used. CT is simply defined as the use of X-ray-based imaging method to produce 3D images usually displayed in the form of image slices [4]. The CBCT machine uses conebeam imaging technology rather than a fanshaped X-ray beam as hat used in conventional CT machines. CBCT provides a complete 3D view of the maxilla, mandible, teeth, and supporting structures with relatively higher spatial resolution and lower radiation dose to the patient [5]. CBCT is used for clinical surgical procedures like removal of impacted teeth and dental implants placement. This review explains about the application of CBCT in the various fields of oral and maxillofacial surgery, advantages and limitations.

History

Sir Godfrey N. Hounsfield developed the first CT in 1967, which made great change in imaging techniques. In 1982, the first CBCT scanner was constructed for angiography at Mayo. In 1997, the department of radiology of the Nihon University School of Dentistry developed a new technology- limited cone-beam computed tomography [6]. In 2000, the first CBCT to be approved by the FDA for dental use in the US was Newtom from Verona

Principles of Cone-Beam Computed Tomography

CBCT follows the principle of tomosynthesis. X-ray source and X-ray sensor rotate around the patient's head and acquires multiple scans of the site. The obtained scans undergoes image reconstruction, which produces the

imaging area into a single, 3D volume that comprises volume elements known as VOXELS [7]. In Cone beam CT 2D digital are used providing an area visualization than a linear detectors as in 3D X-ray beam with circular CT. collimation are used so that the resultant beam is in the shape of a cone, hence the name "cone beam [8]. The field to be viewed can be adjusted to include a portion of the entire oral and maxillofacial region. The software allows reformatting and viewing of the image. With this software, the entire anatomy can be peeled away laver by layer to locate the desired anatomy in all three dimensions [9].

Application of CBCT in Oral and Maxillofacial Surgeries

Impacted and Supernumerary Teeth

Surgical removal of impacted teeth is a routine procedure in oral and maxillofacial surgery. Location of the inferior alveolar nerve canal and its close proximity to the third molar are the risk factors to be noted prior to surgery [10]. Panoramic radiographs and periapical radiographs were used to locate the canal Inferior

alveolar canal follows tortuous path, and not properly seen on a 2-D image. The CBCT is also used for pre-surgical evaluation of impacted supernumerary teeth, and their relations with associated structures like adjacent teeth, maxillary sinus, inferior alveolar nerve, mental nerve [11]. Complications, such as root displacements are more accurately seen with CBCT. In 1990, Rood explained about the seven radiographic signs such as darkening, narrowing or deflection of the root, dark/bifid apex, cortical interruption. diversion. narrowing of the canal commonly associated with IAN r injury, which were later studied by other authors [10]. CBCT provides coronal and sagittal dimensions which helps to view the IAN proximity, course of the IAN measure the exact distance between the root and IAN in all dimensions [12]. For impacted maxillary third molars, OPG and IOPA images are not sufficient to determine their relationship to the maxillary sinus and adjacent tissues due to imaging distortion and superimposition [13]. In CBCT, a root protruding into the maxillary sinus are seen clearly. Bouquet found in a clinical study that 3-dimensional scans were more precise than the panoramic radiograph. Impacted maxillary canines are a great challenge and proper treatment plan and surgical approach are needed [14]. Buccolingual location, Tooth angulation, root dilaceration, and proximity of adjacent teeth are to seen prior to surgical removal of impacted canines [15]. OPG has been used in combination with occlusal and periapical films to provide multiple views. However CBCT is more accurate in viewing the exact location of impacted maxillary canines [16].

e-ISSN: 0975-1556, p-ISSN: 2820-2643

Dental Implantology

CBCT help to locate the vital structures and its distance between the implants. Alveolar bone width are measured using CBCT. CBCT helpsin selecting the most appropriate implant size, location and angulations, reduces surgery time [17].

Preoperative imaging is a crucial step in treatment planning for implant surgery. In anterior maxilla CBCT has main advantage in measuring alveolar bone height in nasal floor region [18]. When immediate implant is planned in anterior maxillary region, CBCT is used due to the capability of measuring buccal alveolar bone width. In maxillary premolar and molar region, bone quality and vertical height in relation to the maxillary sinus, buccal and lingual cortical thickness are imaged properly with CBCT[20]. In the mandible, bones with greater density and thicker cortical plates are present. Vital structures like IAN canal and mental foramen must be seen prior to implant placement [19]. The volume and quality of bone are key for implant success. Bone volumes are accurately measured with **CBCT** [20, 21]. **CBCT** advantageous in evaluating alveolar fenestrations and dehiscences. determines the need for alveolar bone grafting at the time of implant placement [22]. Custom guides for implant placement fabricated using CBCT Postoperative evaluation of implant is necessary for success and to monitor progress over time. **CBCT** periimplantitis, bony defects, but limited in visualising dehiscences [24].

Oral and Maxillofacial Pathology

Pathologic lesions including infections, cysts, tumours and osteonecrosis can be visualized by CBCT. The

CBCT aids to visualize the accurate localization of pathology and its association with vital structures in multiple views. For osteonecrosis of the jaws, CBCT imaging provides a high-resolution 3D analysis. 3D model

preparation and adaptation of the reconstruction plates to the jawbone before surgery are possible with CBCT imaging for maxillofacial reconstruction patients [25]. CBCT images are used to visualize growth change, appreciate borders and relative approximation of adjacent vital structures. CBCT is limited in soft tissue

analysis, though it does possess certain clinical applications in the evaluation of malignancies. but benign soft tissue lesions demonstrate poor diagnostic potential with CBCT [26]. Advantages of CBCT are it provides high quality image with minimal distortion, decreased cost and lower radiation exposure when compared to MRI and CT. Disadvantages are lack of soft tissue definition. CBCT provides sufficient imaging for most odontogenic lesions. CT or MRI is indicated if there is evidence of soft tissue involvement.

e-ISSN: 0975-1556, p-ISSN: 2820-2643

Temporomandibular Joint

CBCT imaging are useful in diagnosing degenerative changes, ankylosis, joint remodelling, and malocclusion, congenital and developmental malformations. CBCT are used to supplement other imaging techniques, such as MRI. CBCT are used to measure condylar volume and surface area, as well as a comparison between the condyles [27].

Orthodontics

CBCT are used for 3D views of vital structures and impacted tooth, TMJ assessments, Orthognathic growth assessments, assessment of skeletal symmetry, treatment planning and for placement of dental implants while placing temporary anchorage devices [28].

Maxillofacial Traumatology

Patients can be assessed with CBCT for proper treatment planning. CBCT are used in detecting orbital floor fractures. CBCT could be used in detecting fractures. The CBCT technology can also be used in combination with specific computer software for preoperative planning and fabrication of reconstruction plate for mandibular fractures [29]. When CBCT and CT were compared in diagnostic imaging of midface, it was concluded that CBCT provided better image quality and high resolution. CBCT was not ideal for postoperative facial imaging compared to CT in terms of viewing maxillofacial bony

e-ISSN: 0975-1556, p-ISSN: 2820-2643

structures in contact with the osteosynthesis materials [30].

Conclusion

In this review clinical applications of CBCT in oral and maxillofacial surgery was discussed. Wide range of advancements have been seen after the introduction of CBCT imaging in oral and maxillofacial practice. The advantages of CBCT for maxillofacial imaging are explained in several studies. CBCT helps in proper diagnosis, treatment planning, evaluation of treatment outcome and research purposes.

References

- 1. Brenner DJ, Hall EJ. Computed tomography—An increasing source of radiation exposure. The New England Journal of Medicine. 2007; 357:2277-2284.
- 2. Hatcher DC, Dial C, Mayorga C. Cone beam CT for pre-surgical assessment of implant sites. Journal of the California Dental Association. 2003;31:825-833.
- 3. Scarfe WC, Farmen AG. What is cone beam CT and how does it work. Dent Clin North Am 2008;52:707-30.
- 4. Thomas SL. Application of cone beam CT in the office setting. Dent Clin North Am 2008;52:752-9.
- 5. White SC, Pharoah MJ. Oral Radiology Principles & Interpretation. 6th ed. New Delhi: Elsevier publishers; 2010; 225-43.
- Karjodkar FR. Textbook of Dental & Maxillofacial Radiology. 2nd ed. New Delhi: Jaypee Brothers Medical Publishers; 2009; 279-282.
- 7. Arnheiter C, Scarfe WC, FarmanAG. Trends in maxillofacial cone-beam computed tomography usage. Oral Radiol. 2006;22:80-5.
- 8. Haiter-Neto F, Wenzel A, Gotfredsen E. Diagnostic accuracy of cone beam computed tomography scans compared with intraoral image modalities for detection of caries lesions. Dentomaxill of ac Radiol. 2008;37:18-22.

- 9. Levato CM, Farman AG, Chenin DL. Cone-beam computed tomography: A clinician's perspective. Inside Dentistry 2009. Available from: https://www.dentalaegis.com/id/2009/05/cone-beam-computed-tomography-a-clinicians-perspective. [Last accessed on 2022 Jun 20]
- 10. Ohman A., Kivijarvi K., Blomback U., Flygare L. Pre-operative radiographic evaluation of lower third molars with computed tomography. Dentomaxillofac. Radiol. 2006; 35: 30–35
- 11. Sekerci A., Sisman Y. Comparison between panoramic radiography and cone-beam computed tomography findings for of the assessment relationship impacted between mandibular third molars and the mandibular canal. Oral Radiol. 2014; 30: 170–178.
- 12. Matzen L.H., Wenzel A. Efficacy of CBCT for assessment of impacted mandibular third molars: A review Based on a hierarchical model of evidence. Dentomaxillofac. Radiol. 2015; 44: 20140189.
- 13. Kosalagood P., Charoenlarp Panmekiate S., Sessirisombat S. Displacement of an impacted maxillary canine root fragment into nasolacrimal duct: Α diagnostic dilemma. J. Oral Maxillofac. Surg. Med. Pathol. 2015; 27: 529-532. Dent. J. 2019; 7:52 17 of 23
- Nakagawa Y., Ishii H., Nomura Y., Watanabe N.Y., Hoshiba D., Kobayashi K., Ishibashi K. Third Molar Position: Reliability of Panoramic Radiography. J. Oral Maxillofac. Surg. 2007; 65: 1303–1308.
- 15. Rood, J.; Shehab, B.N. The radiological prediction of inferior alveolar nerve injury during third molar surgery. Br. J. Oral Maxillofac. Surg. 1990; 28: 20–25.
- 16. Blaeser B.F., August M.A., Donoff R.B., Kaban L.B., Dodson T.B. Panoramic radiographic risk factors for inferior alveolar nerve injury after third

e-ISSN: 0975-1556, p-ISSN: 2820-2643

- molar extraction. J. Oral Maxillofac. Surg. 2003, 61, 417–421.
- 17. Sedaghatfar M., August M.A., Dodson T.B. Panoramic radiographic findings as predictors of inferior alveolar nerve exposure following third molar extraction. J. Oral Maxillofac. Surg. 2005; 63: 3–7.
- 18. Tyndall D., Brooks S. Selection criteria for dental implant site imaging: A position paper of the American Academy of Oral and Maxillofacial Radiology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2000; 89: 630–637.
- 19. Bokkasam V., Muddepalli P., Jayam R., Devaki S., Pakerla A., Koduri S. Comparison of panoramic radiograph with cone-beam computed tomography in assessment of maxillary sinus floor and nasal floor. J. Indian Acad. Oral Med. Radiol. 2015; 27: 194.
- 20. Nowzari H., Molayem S., Chiu C.H.K., Rich S.K. Cone Beam Computed Tomographic Measurement of Maxillary Central Incisors to Determine Prevalence of Facial Alveolar Bone Width ≥2 mm. Clin. Implant. Dent. Relat. Res. 2010; 14: 595–602.
- 21. Yoshimine S. I., Nishihara K., Nozoe E., Yoshimine M., Nakamura N. Topographic Analysis of Maxillary Premolars and Molars and Maxillary Sinus Using Cone Beam Computed Tomography. Implant. Dent. 2012; 21: 528–535.
- 22. Angelopoulos C., Thomas S., Hechler S., Parissis N., Hlavacek M. Comparison Between Digital Panoramic Radiography and Cone-Beam Computed Tomography for the Identification of the Mandibular Canal as Part of Presurgical Dental Implant Assessment. J. Oral Maxillofac. Surg. 2008; 66: 2130–21.
- 23. Uchida Y., Yamashita Y., Goto M., Hanihara T. Measurement of Anterior Loop Length for the Mandibular Canal and Diameter of the Mandibular

- Incisive Canal to Avoid Nerve Damage When Installing Endosseous Implants in the Interforaminal Region. J. Oral Maxillofac. Surg. 2007;65:1772–1779.
- 24. Gröndahl K., Ekestubbe A., Lofthag-Hansen S., Lofthag-Hansen S. Cone-Beam CT for Preoperative Implant Planning in the Posterior Mandible: Visibility of Anatomic Landmarks. Clin. Implant Dent. Relat. Res. 2009; 11: 246–255.
- 25. Cotti E., Campisi G. Advanced radiographic techniques for the detection of lesions in bone. Endod. Top. 2004; 7: 52.
- 26. Mishra S., Degwekar S., Banode P., Bhowate R., Motwani M., Mishra P. Comparative study of cone-beam computed tomography and multislice computed tomography in the radiographic evaluation of cysts and tumors of the jaws. J. Indian Acad. Oral Med. Radiol. 2014; 26: 253.
- 27. Westesson, P. Reliability and validity of imaging diagnosis of tempora mandibular joint disorder. Adv. Dent. Res. 1993; 7: 137–151.
- 28. Zhao X, Hu J, Zhang P. GPU-Based 3D cone-beam CT image reconstruction for large data volume. Int J Biomed Imaging 2009;2009: 149079.
- 29. Thor A. Preoperative planning virtual osteotomies followed bv fabrication of patient specific reconstruction plate for secondary correction and fixation of displaced bilateral mandibular body fracture. Craniomaxillofacial Trauma and Reconstruction. 2016; 9:188-194.
- 30. Veldhoen S, Schöllchen M, Hanken H, Precht C, Henes FO, Schön G, Nagel HD, Schumacher U, Heiland M, Adam G, Regier M. Performance of conebeam computed tomography and multidetector computed tomography in diagnostic imaging of the midface: A comparative study on phantom and cadaver head scans. European Radiology. 2017; 27:790-800.