e-ISSN: 0975-1556, p-ISSN:2820-2643

Available online on www.ijpcr.com

International Journal of Pharmaceutical and Clinical Research 2024; 16(6); 1615-1619

Closed Reduction and Dorsal Percutaneous Screw Fixation of Scaphoid Fracture

Niraj Kumar¹, Rakesh Kumar²

¹Senior Resident, Department of Orthopaedics, Sri Krishna Medical College & Hospital, Muzaffarpur, Bihar

²Associate Professor, Department of Orthopaedics, Sri Krishna Medical College & Hospital, Muzaffarpur, Bihar

Received: 25-01-2024 / Revised: 23-02-2024 / Accepted: 26-03-2024

Corresponding Author: Dr. Rakesh Kumar

Conflict of interest: Nil

Abstract:

Background: Surgical treatment of scaphoid fractures is technically demanding and the goals of surgery are to restore the anatomical configuration accurately and to maintain the vascularity of the bone with pain free wrist movement.

Methods: The study was conducted in the Department of Orthopedics, Sri Krishna Medical College and Hospital, Muzaffarpur, Bihar, (20 Patients) who were operated between December 2019 to May 2021 and who were previously operated in our institution and subsequently followed them.

Results: All cases were treated with closed reduction and dorsal percutaneous fixation with Herbert screw. Fifty five percent's cases were operated between 10-15 days of injury. Average hospital stay was 5 days. All cases showed union at around 18 weeks. Regarding functional results, sixty percent cases had no difficulty doing day to day activity, in last follow up according to DASH score.

Conclusion: Closed dorsal percutanous method gives minimal post-operative complication, better patient compliance and best functional outcome.

Keywords: Dorsal Percutaneous Screw Fixation, Scaphoid Fracture.

This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Scaphoid fractures are the most common fractures of the carpal bones, accounting for seventy to eighty percent of all carpal fractures and 11% of all hand fractures. In adults, seventy percent of all scaphoid fractures involve the waist of the scaphoid, twenty percent involve the proximal pole, with the remaining ten percent involving the distal pole.

Young males between 10 and 19 years of age are at highest risk for fracture of the scaphoid. The scaphoid has several unique characteristics that affect its healing potential.

Approximately eighty percent of the bone is covered with articular cartilage and the scaphoid has a tenuous blood supply. [1] The dorsal carpal branch of the radial artery enters the dorsal ridge at the level of the waist and supplies the proximal seventy to eighty percent of the scaphoid. Distaltoproximal orientation of blood supply of the scaphoid and the lack of anastomoses between the dorsal and palmar vessels makes the proximal pole of scaphoid more susceptible to non-union and avascular necrosis after fracture. Even the primary treatment demands expertise and familiarity with

different treatment options. If those requirements are met a good prognosis can be expected.

Open reduction and internal fixation of acute fracture of the scaphoid using a compression lag screw was recommended by McLaughlin and Maudsley and Chen to allow early mobilization of wrist. Herbert and Fischer first described the technique in 1984, since then the Herbert screw has become widely accepted as a mode of treatment.

Rettig ME et al. evaluated fourteen patients with acute displaced scaphoid waist fractures treated by open reduction and internal fixation with Herbert screw and K wires using either volar approach or dorsal approach. [2-4]

Open technique, however, is not without risk and significant. complications have been reported. It requires significant soft tissue dissection and violation of the extrinsic volar and dorsal ligaments. The most common complication seen in various studies were; problem with scar (Hypertrophied scar), difficulty in guide wire placement, screw protrusion, osteoarthritic changes in scaphotrapezial joint after volar approach and post operative instability. Another common

complication following Herbert screw fixation is nonunion. [5,6]

Material and Methods

The study was conducted in the Department of Orthopedics, Sri Krishna Medical College and Hospital, Muzaffarpur, Bihar (20 Patients) who were operated between December 2019 to May 2021 and who were previously operated in our institution and subsequently followed them.

Inclusion Criteria

- Active patients with scaphoid fractures without any major fracture of the Upper limb.
- Delayed union or fracture within 3 (three) months.
- Closed fracture.

Exclusion Criteria

- Elderly patients with low functional demands.
- Distal pole fracture scaphoid.
- Scaphoid non-union.
- Old fracture with cyst formation or sclerosis.
- Associated with major fractures of upper limb.
- Pre-existing neurological problems of upper limb.
- Associated with previous hand diseases

The patients were evaluated thoroughly to exclude any comorbid conditions by history taking, detailed clinical examination including X-rays and CT-scans with 3Dreconstruction.

e-ISSN: 0975-1556, p-ISSN: 2820-2643

Implants and instruments for fracture fixation:

- General instruments for mini incision.
- 2.4/2.7 mm Herbert screw and its matching instruments.
- 2mm canulated drill bead.
- Guide wire
- 2.4/2.7 screw driver.

Follow up

- All patients were evaluated at four weeks interval until fracture united. After union three monthly follow up done till date.
- At each follow up, patients were subjected to clinical as well as radiological examination with scaphoid profile. Union was considered to have occurred when there was no tenderness at the anatomical snuff box or at scaphoid tubercle and there was evidence of trabeculae crossing fracture on at least three views.
- On final follow up clinical assessment were performed based on disabilities of the arm, shoulder and hand score (DASH).

Figure 1: Pre-operative x-ray (PA and Lat view) of SCAPHOID Fracture

Figure 2: Post-operative x-ray (PA and Lat view) of SCAPHOID Fracture

Results:

Table 1: Age Distribution

e-ISSN: 0975-1556, p-ISSN: 2820-2643

Age group (years)	No. of cases	Percentage (%)
18-20	6	30
21-30	10	50
31-40	4	20
Total	20	100

The mean age was 26.2 years.

Table 2: Sex Distribution

Sex	No. of cases	Percentage (%)
Male	18	90
Female	2	10
Total	20	100

The male and female ratio was 9: 1.

Table 3: Mode of Injury

Mode of injury	No. of cases	Percentage (%)
RTA	4	20
Accidental fall	16	80
Total	20	100

In our study major trauma was due to accidental fall; eighty percent; whereas road traffic accident was twenty percent.

Table 4: Duration of surgery

Duration of surgery (minute)	No. of cases	Percentage (%)
<35	9	45
35-45	11	55
Total	20	100

Average duration of surgery in our series was 40 min (range 35 to 45 minutes).

Table 5: Post-operative complication

Complications	No. of cases	Percentage (%)
Surgical site infection (superficial)	1	5
Neurological Complication	Nil	Nil
Loss of reduction	Nil	Nil
Implant related complication	1	5
Nonunion	Nil	Nil

One case had surgical site infection and one case had implant related complication.

Table 6: Union Time

Union Time	No. of cases	Percentage (%)
By 10 weeks	9	45
By 14 weeks	8	40
By 18 weeks	3	15
Total	20	100

All cases showed union, eighty five percent cases had united within 14 weeks and remaining three cases(fifteen percent) were united within 18 weeks. The clinical outcome according to DASH SCORE at the time of last follow-up was graded as no difficulty in 12 patients, mild difficulty in 6 patients, moderate difficulty in 1 patient and severe difficulty in 1 patient.

Table 7: DASH Score

- 11.0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0		
Category	No. of cases	
No difficulty	12	
Mild difficulty	6	
Moderate difficulty	1	
Severe difficulty	1	
Unable	0	

18 months follow-up twelve patients had no difficulty, six patients had mild difficulty, one patient had moderate difficulty and one patient had

severe difficulty to do there day to day activity according to DASH score.

Discussion

Fractures of scaphoid are common, and many times are difficult to diagnose and treat. Pain at anatomical snuff box, wrist movement difficulty and difficulty in finger grip on the affected side are the usual presenting features. Fracture scaphoid can cause prolonged morbidity and absences from work in young adults in which they are most common. Advanced imaging modalities, better understanding of fracture biomechanics and modern reduction tools have helped in establishing surgical treatment as the standard method of treatment in these patients. [7-9] Surgical treatment of scaphoid fractures is technically demanding and the goals of surgery are to restore the anatomical configuration accurately and to maintain the vascularity of the bone with pain free wrist movement. In our series only four (twenty percent) patients were above 30 years, rest sixteen (eighty percent) patients were below 30 years.

This finding suggests that scaphoid fracture is common in young adults which correlate with the literature. The mode of injury was accidental fall in majority of patients (accidental fall in 16 patients; eighty percent; and road traffic accident in four patients; twenty percent). Majority of patients in our study were males (18 males, 2 females) which can be explained by the fact that, males are more prone to accident. The male preponderance in our study also correlates with the literature. [7,8] The majority of authors use Herbert and Fisher classification of scaphoid fractures in their publications. According to medical resources, fractures of the proximal pole and waist fracture are most frequent fractures.

The time elapsed after injury is important because it is difficult to achieve union and preserve vascularity of fragments if surgery is delayed. In our study, the time interval between injury and surgery ranged from 11 to 15 days (median13 days). Relative delay was due to late presentation to our hospital, case load in our hospital and their socio-economical status. In our study all patients were treated with closed reduction and dorsal percutaneous fixation of scaphoid fracture with Herbert screw. In our series all cases showed union. Forty five percent cases (nine cases) united in around ten wks and forty percent (eight cases) united around twelve wks. The remaining three cases were united within eighteen wks. No experience of delayed union and non-union in our study.

Naranje S et al. reported hundred percent union rates with Percutaneous Herbert screw fixation in thirty two patients involving both fresh and late scaphoid fracture presentations with dorsal approach. In our series we achieved hundred percent union rates, minimal complication and an

early return of wrist function with closed reduction and internal fixation with Herbert screw irrespective of type of fracture.

e-ISSN: 0975-1556, p-ISSN: 2820-2643

Several authors have stressed that, important consideration during Herbert screw fixation is that the screw should be placed within the center of the scaphoid. A high successful union rate of approximately ninety five percent can be achieved after adequate screw fixation; however mispositioning can result in nonunion of scaphoid fractures. Nonunion may occur in five to ten percent of all cases, with an even higher incidence in displaced fracture and proximal pole fracture. [10,11]

Conclusion

Closed dorsal percutanous method gives minimal postoperative complication, better patient compliance and best functional outcome. We conclude that, the closed operative method should be trailed in displaced and undisplaced scaphoid fractures.

References

- Filan SL, Herbert TJ. Herbert screw fixation of scaphoid fractures. J. Bone Joint Sur 1996;78-B:519-29.
- Mclaughin HL. Fracture of the carpal navicular (scaphoid) bone: some observation based on treatment by open reduction and internal fixation. J. Bone Joint Surg [Am] 1954; 36-A: 765-74.
- 3. Maudsley RH, Chen SC. Screw fixation in the management of the fractured carpal scaphoid. J. Bone Joint Surg [Br] 1972; 54-B: 432-41.
- 4. Herbert TJ. Use of Herbert Bone screw in surgery of the wrist.Clinorthop1986; (202):79-92.
- 5. Naranje S, Kotwal PP, Shamshery P, Gupta V, Nag HL. Percutaneous fixation of selected scaphoid fractures by dorsal approach. International orthopedics 2010;34:997-1003
- 6. Bushnell BD, McWilliams AD, Messer TM. Complication in dorsal percutaneous cannulated screw fixation of nondisplaced scaphoid waist fracture.J Hand Surg2007; 32A:827-33.
- 7. Haisman JM, Rhode RS, Weiland AJ. American Academy of Orthopedic Surgeons. Acute fracture of the scaphoid. J Bone Joint Surg. Am 2006; 88:2750–8.
- 8. Tysver T, Jawa A. Fractures in brief. Scaphoid Fractures. ClinOrthop. Relat. Res 2010; 468: 2553–5.
- 9. Schuind F, Haentjens P, Van Innis F, Vander Maren C, Garcia-Elias M, Sennwald G. Prognostic factors in treatment of carpal scaphoid nonunions. J Hand surg Am 1999; 24:761-76.
- 10. Duppe H, Johnell O, Lundborg G et al.. Long term results of the fracture of the scaphoid, a followup study of more than thirty years. J Bone Joint Surg Am 1994; 76:249-52.

11. Menapace KA, Larabec L, Arnolzky SP et al. anatomic placement of the Herbert Whipple

screw in scaphoid Fractures; a cadaveric study, Am. J Hand Surg. 2001;26:883-92.

e-ISSN: 0975-1556, p-ISSN: 2820-2643