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ABSTRACT 
The present study was aimed to investigate the effect of Sinapic acid on antioxidant potential in normal and Streptozotocin-
induced diabetic rats. Diabetes was induced in female wistar rats by a single intraperitoneal administration of 
Streptozotocin (45 mg/ kg BW). Rats were divided into six groups: normal (untreated), normal + Sinapic acid (15mg/kg), 
normal + Sinapic acid (30 mg/kg), diabetic control, diabetic + Sinapic acid (15mg/kg) and diabetic + Sinapic acid (30 
mg/kg). Diabetic rats exhibited elevated levels of lipid peroxidation markers such as thiobarbituric acid reactive substances 
and hydroperoxides in plasma and tissues and decreased levels of antioxidants superoxide dismutase (SOD), catalase 
(CAT), glutathione peroxidase (GPX), reduced glutathione (GSH), ceruloplasmin, vitamin C and vitamin E in serum and 
tissues. Oral administration of Sinapic acid for a period of 35 days significantly decreased lipid peroxidation markers and 
increased the antioxidants suggesting the antioxidant potential of Sinapic acid in diabetic rats. 
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INTRODUCTION 
Diabetes mellitus, a common metabolic disorder, is 
characterized mainly by chronic hyperglycemia resulting 
from defects in insulin secretion and /or its action. This 
eventually leads to improper regulation of carbohydrate, 
protein and lipid metabolism that ultimately contribute to a 
key factor in the development and the progression of micro 
and macrovascular complications. [1] The “top three” 
countries with largest number of diabetic people are India, 
China and USA. The prevalence of diabetes in India is 
expected to increase from current 40.9 to 69.9 million by the 
year 2025 unless urgent preventive steps are taken. [2] 
Streptozotocin (STZ) is an alkylating agent antibiotic that 
experimentally produces diabetes due to β-cell death by the 
mechanism of DNA damage in rodent islets. [3] β-Cells are 
very susceptible to oxidative changes since they possess a 
low antioxidative capacity. [4-5] 

Currently, oxidative stress is suggested as mechanism 
underlying diabetes and diabetic complications [6], which 
results from an imbalance between radical generating and 
radical scavenging systems. In diabetes, protein glycation 
and glucose autoxidation may generate free radicals, which  
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in turn catalyze lipid peroxidation. [7-8] Reactive oxygen 
species (ROS) are part of the defense mechanism against 
infection, but excessive generation of free oxygen radicals 
may damage tissue. [9] Co-operative defense systems that 
protect the body from free radical damage include the 
antioxidant nutrients and enzymes. [10] Enzymatic 
antioxidants namely superoxide dismutase (SOD), catalase 
(CAT) and glutathione peroxidase (GPx) and non-enzymatic 
antioxidants such as vitamins C and E, reduced glutathione 
(GSH) and ceruloplasmin (CP) play an important role in 
alleviating tissue damage due to the formation of free radical. 
[11] The efficiency of this defense mechanism is altered in 
diabetes [12] and therefore, the ineffective scavenging of free 
radicals may play a crucial role in determining tissue injury. 
Though several pharmacological agents have been developed 
for management of diabetes, many traditional plant 
treatments are still used throughout the world. In India, 
several indigenous plant products have been used by the 
practitioners of the Ayurvedic system to treat diabetes. [13] 

Flavonoids, ubiquitously found in the plant kingdom, are 
proposed to elicit their beneficial effects in-vivo in plant 
through their ability to scavenge oxygen-free radicals, 
quench transition metals and / or boost the system. [14-15]  
Sinapinic acid or Sinapic acid (Sinapine - Origin: L. Sinapi, 
sinapis, mustard, Gr., cf. F. Sinapine), is a small naturally 
occurring carboxylic acid. It is a member of the 
phenylpropanoid family. Sinapic acid is a cinnamic acid 
derivative which possesses 4-hydroxy-3 5-dimethoxy 
cinnamic acid is one of the phenolic acids widely distributed 
in edible plants such as cereals, nuts, oil seeds and berries. [16] 
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Sinapic acid is a major free phenolic acid in rapseed meal, 
with the majority found in the esterified form of sinapine. [17]. 
It is well known that phenolic acids exist in the bound form 
by an ester linkage to other molecule in a plant body. [18] 

Hence, the present study was aimed at evaluating the effect 
of Sinapic acid on lipid peroxidation and antioxidants (SOD, 
CAT, GPx, GSH, ceruloplasmin, vitamin C and vitamin E) in 
wistar rats subjected to streptozotocin-induced oxidative 
stress. 
 
MATERIALS AND METHODS 
Experimental Animals 
Female albino wistar rats (150-200 g) obtained from 
Venkateswara Enterprises, Bangalore were used in this study. 
They were housed in polypropylene cages (47cm × 34cm × 
20cm) lined with husk. It was renewed every 24 hours under 
a 12:12 hour light: dark cycle at around 22ºC and had free 
access to water and food.  The rats were fed on a standard 
pellet diet (Pranav Agro Industries Limited., Maharashtra, 
India). The pellet diet consisted of 22.02% crude protein, 
4.25% crude oil, 3.02% crude fiber, 7.5% ash, 1.38% sand 
silica, 0.8% calcium, 0.6% phosphorus, 2.46% glucose, 1.8% 
vitamins and 56.17% nitrogen free extract (carbohydrates). 
The diet provided metabolizable energy of 3600 kcal. The 
experiment was carried out in accordance with the guidelines 
of the Committee for the Purpose of Control and Supervision 
of Experiments on Animals (CPCSEA), New Delhi, India. 
Drug and Chemicals 
Streptozotocin (STZ) was purchased from Himedia 
Laboratories Private Limited, Mumbai. Sinapic acid was 
purchased from Sigma- Aldrich, St. Louis, USA. All other 
chemicals and biochemicals used in the study were of 
analytical grade. 
Experimental induction of diabetes 
STZ was used for the induction of diabetes mellitus in 
normoglycemic female albino wistar rats. Diabetes was 
induced in rats by a single intraperitoneal injection of freshly 
prepared STZ (45 mg/ kg body weight) in citrate buffer (pH 
4.5) in a volume of 1 ml/ kg. [19] STZ injected animals were 
given 10% glucose solution for 5 days to prevent initial drug 
induced hyperglycemic mortality. Diabetes was confirmed in 
STZ rats by measuring the fasting blood glucose 
concentration, 48 hours after injection with STZ. Albino rats 
with a blood glucose level above 240 mg/ dl were considered 
to be diabetic and were used in the experiment. 
Experimental design 
In the experiment, a total of 36 rats (18 diabetic surviving 
rats and 18 control rats) were used. The rats were divided 
into 6 groups of 6 rats in each group. 
Group 1: Normal control rats  
Group 2: Control rats administrated orally with Sinapic acid 
(15mg/kg) 
Group 3: Control rats administrated orally with Sinapic acid 
(30mg/kg) 
Group 4: Diabetic control rats  
Group 5: Diabetic rats treated orally with Sinapic acid 
(15mg/kg) 
Group 6: Diabetic rats treated orally with Sinapic acid 
(30mg/kg) 
Sinapic acid was dissolved in 0.2% DMSO and administrated 
to rats orally using an intragastric tube daily for a period of 
35 days.  
Sample collection 

After 35 days of treatment, the animals were fasted for 12 
hours and then sacrificed by cervical decapitation. Blood was 
collected in tubes with EDTA for biochemical analysis. The 
liver, kidney and pancreas were carefully removed, weighed 
and washed in ice-cold saline to remove the blood. The liver, 
kidney and pancreas were sliced into pieces and 
homogenized in an appropriate buffer pH 7.0. The 
homogenates were centrifuged at 3000 rpm for 10 min at 0oC 

in cold centrifuge. The supernatant was separated and used 
for various biochemical estimations.              
Biochemical estimations 
Biochemical parameters such as plasma thiobarbituric acid 
reactive substances were estimated by the method of Yagi. 
[20] The levels of lipid peroxidation in tissues were estimated 
by the method of Nichans and Samuelson.  [21] The levels of 
HP were estimated by the method of Jiang et al. [22] 
Superoxide dismutase was assayed by the method of Kakkar 
et al. [23] The activity of catalase was determined by the 
method of Sinha. [24] Glutathione peroxidase was estimated 
by the method of Rotruck et al. [25] Reduced glutathione 
(GSH) was estimated by the method of Ellman. [26] Vitamin 
C in plasma and tissues were estimated by the method of 
Omaye et al. [27] Vitamin E was estimated in plasma and 
tissues by the method of Baker et al.  [28] Ceruloplasmin in 
serum was estimated by the method of Ravin. [29]

Statistical Analysis 
Results were expressed as mean ± SD for six rats in each 
experimental group. Statistical analysis was performed using 
SPSS (Statistical Package for the Social Sciences) 9.05 
software. The data were analyzed using one-way analysis of 
variance (ANOVA) and group means were compared with 
Duncan’s Multiple Range Test (DMRT). P-values < 0.05 
were considered as significant. 
RESULTS 
Effect of Sinapic acid on TBARS and hydroperoxides  
The effect of Sinapic acid on the concentration of 
thiobarbituric acid reactive substances (TBARS) and 
hydroperoxides (HP) in normal and STZ-induced diabetic 
rats are presented in Table 1 and 2 respectively. The diabetic 
rats showed significant increase in the concentration of 
TBARS and HP in plasma and tissues (liver, kidney and 
pancreas). Oral administration of Sinapic acid in STZ- 
induced diabetic rats significantly decreased the levels of 
TBARS and HP in plasma and tissues. 
Effect of Sinapic acid on antioxidants  
The activity of enzymatic antioxidants such as SOD, CAT 
and GPx in the liver, kidney and pancreas of normal and 
STZ-induced diabetic animals are shown in Table 3 and 4. A 
significant reduction in the activity of SOD and CAT in the 
liver, kidney and pancreas of diabetic rats were observed 
while the activity of GPx decreased in the liver and pancreas 
and increased in kidney of diabetic rats. Oral administration 
of Sinapic acid exerted a significant effect on the 
antioxidants in STZ- induced diabetic rats.  
The effect of Sinapic acid on serum ceruloplasmin and GSH 
in liver, kidney and pancreas of normal and STZ-induced 
diabetic rats are presented in Table 5. The levels of vitamin C 
and E in serum, liver and kidney of normal and STZ-induced 
diabetic rats are shown in Table 6. STZ-induced diabetic rats 
showed significant decrease in the levels of all the non-
enzymatic antioxidants in serum and tissues. Rats treated 
with Sinapic acid significantly increased the levels of these  
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Table 1: Effect of Sinapic acid on the levels of TBARS in plasma and tissues of normal and STZ-induced diabetic rats 
TBARS (mM/100g tissue) Groups Plasma TBARS 

(nmol/ml) Liver Kidney Pancreas 
Normal control 0.141 ± 0.02a 0.67 ± 0.07a 0.75 ± 0.05a 0.33 ± 0.03a

Normal + Sinapic acid (15mg/kg) 0.145 ± 0.03a 0.64 ± 0.03a 0.72 ± 0.03 a 0.36 ± 0.04a

Normal + Sinapic acid (30mg/kg) 0.141 ± 0.03a 0.66 ± 0.05a 0.77 ± 0.05a 0.28 ± 0.15a

Diabetic control 0.455 ± 0.03b 3.64 ± 0.21b 3.64 ± 0.25b 2.40 ± 0.12b

Diabetic + Sinapic acid (15mg/kg) 0.340 ± 0.01c 2.55 ± 0.14c 2.54 ± 0.19c 1.48 ± 0.05c

Diabetic + Sinapic acid (30mg/kg) 0.25 ± 0.03d 1.85 ± 0.07d 1.85 ± 0.15d 0.80 ± 0.06d

Each value is mean ± S.D. for six rats in each group. Values not sharing a common superscript (a-d) differ significantly with each other (P<0.05, DMRT). 
 

Table 2: Effect of sinapic acid on the levels of lipid hydroperoxide (HP) in   plasma and   tissues of normal and STZ- induced diabetic rats 
Lipid hydroperoxide (mM/g tissue) Groups Plasma Hydroperoxides 

(mM/dl) Liver Kidney Pancreas 
Normal control 10.24 ± 0.98a 68.92 ± 2.79a 43.63 ± 2.28a 25.34 ± 2.90a

Normal+ Sinapic acid (15mg/kg) 10.65 ± 0.99a 66.73 ± 2.34a 41.85 ± 1.35a 25.23 ± 2.85a

Normal + Sinapic acid (30mg/kg) 10.52 ± 0.85a 66.93 ± 2.21a 42.15 ± 2.23a 25.19 ± 2.1a

Diabetic control 26.54 ± 1.59b 96.48 ± 4.91b 72.49 ± 2.38b 37.58 ± 2.67b

Diabetic + Sinapic acid (15mg/kg) 13.05 ± 0.65c 78.89 ± 1.54c 64.88 ± 3.24c 26.61 ± 1.23c

Diabetic + Sinapic acid (30mg/kg) 11.37 ± 0.59d 74.71 ± 1.50d 58.57 ± 3.07d 24.05 ±  1.12d

Each value is mean ± S.D. for six rats in each group. Values not sharing a common superscript (a-d) differ significantly with each other (P<0.05, DMRT). 
 

Table 3: Effect of sinapic acid on the activities of SOD and CAT in tissues of normal and STZ-induced diabetic rats 
SOD (Unitsa / mg protein) CAT (Unitsb / mg protein) Groups Liver Kidney Pancreas Liver Kidney Pancreas 

Normal control 10.33 ± 0.48a 12.54 ± 0.92a 6.19 ± 0.36a 67.54 ± 3.02a 43.57 ± 3.31a 4.39  ± 0.08a

Normal+ Sinapic acid (15mg/kg) 10.75 ± 0.56a 12.36 ± 0.91a 6.15 ± 0.34a 67.75 ± 3.35a 43.76 ± 3.35a 4.36 ± 0.07a

Normal + Sinapic acid (30mg/kg) 10.59 ± 0.51a 12.78 ± 0.99a 6.13 ± 0.35a 67.28 ± 3.01a 44.05 ± 3.30a 4.23 ± 0.05a

Diabetic control 5.56 ± 1.20b 6.35 ± 0.46b 3.55 ± 0.15b 35.52 ± 2.10b 21.29 ± 1.56b 2.04 ± 0.1b

Diabetic + Sinapic acid (15mg/kg) 7.34 ± 1.31c 8.60 ± 1.51c 4.21 ± 0.54c 51.60 ± 3.09c 27.44 ± 1.89c 3.34 ± 0.19c

Diabetic + Sinapic acid (30mg/kg) 8.47 ± 1.45d 14.20 ± 0.52d 5.14 ± 0.59d 58.48 ± 3.13d 33.52 ± 2.93d 3.74 ± 0.25d

Ua - Enzyme concentration required to inhibit the chromogen produced by 50% in one minute. 
Ub -  μmol of hydrogen peroxide consumed per minute. 
Each value is mean ± S.D. for six rats in each group. Values not sharing a common superscript (a-d) differ significantly with each other (P<0.05, DMRT). 

 
Table 4: Effect of sinapic acid on GPx activity in tissues of normal and STZ-induced diabetic rats 

GPx (Unitsa /min/mg protein) Groups Liver Kidney Pancreas 
Normal control 8.40 ± 0.52a 3.25 ± 0.87a 32.51 ± 2.89a

Normal+ Sinapic acid (15mg/kg) 8.41 ± 0.50a 3.21 ± 0.85a 33.74 ± 2.85a

Normal + Sinapic acid (30mg/kg) 8.41 ± 0.50a 3.20 ± 0.35a 32.90 ± 1.25a

Diabetic control 4.30 ± 0.31b 9.60 ± 2.35b 15.40 ± 1.25b

Diabetic + Sinapic acid (15mg/kg) 6.17 ± 1.20c 6.26 ± 1.21c 26.30 ± 2.57c

Diabetic + Sinapic acid (30mg/kg) 6.75 ± 0.25d 5.36 ± 0.05d 28.56 ± 2.55d

Ua - μg of glutathione consumed. 
Each value is mean ± S.D. for six rats in each group. Values not sharing a common superscript (a-d) differ significantly with each other (P<0.05, DMRT). 

 
Table 5: Effect of sinapic acid on serum ceruloplasmin and GSH in tissues of normal and STZ-induced diabetic rats 

GSH(mg/dl) Groups Ceruloplasmin (mg/dl) Liver Kidney Pancreas 
Normal control 15.57 ± 2.8a 8.39 ± 1.52a 8.57 ± 1.05a 13.18 ± 1.8a

Normal+ Sinapic acid (15mg/kg) 15.33 ± 2.1a 8.35 ± 1.32a 8.37 ± 0.20a 13.36 ± 1.61a

Normal + Sinapic acid (30mg/kg) 14.64 ± 2.4a 8.50 ± 0.57a 8.44 ± 0.36a 13.11 ± 1.43a

Diabetic control 11.90 ± 2.5b 4.25 ± 0.47b 4.60 ± 0.77b 5.56 ± 0.12b

Diabetic + Sinapic acid (15mg/kg) 13.49 ± 1.9c 5.48 ± 0.35c 5.56 ± 0.34c 7.63 ± 0.18c

Diabetic + Sinapic acid (30mg/kg) 27.36 ± 1.5d 6.64 ± 0.38d 6.36 ± 1.43d 9.22 ± 1.46d

Each value is mean ± S.D. for six rats in each group. Values not sharing a common superscript (a-d) differ significantly with each other (P<0.05, DMRT). 
 

Table 6: Effect of Sinapic acid on the levels of vitamin C and vitamin E in serum and tissues of normal and STZ-induced diabetic rats 
Vitamin C (mg/dl) Vitamin E (mg/dl)  

Groups Serum Liver Kidney Serum Liver Kidney 
Normal control 2.42 ± 0.08a 0.54 ± 0.12a 0.53 ± 0.12a 7.29 ± 0.16a 5.30 ± 0.4a 5.27 ± 0.35a

Normal+ Sinapic acid (15mg/kg) 2.34 ± 0.22a 0.55± 0.13a 0.52 ± 0.11a 7.01 ± 0.14a 5.22 ± 0.41a 5.15 ± 0.31a

Normal + Sinapic acid (30mg/kg) 2.23 ± 0.06a 0.53 ± 0.12a 0.52 ± 0.11a 7.01 ± 0.40a 5.31 ± 0.40a 5.13 ± 0.34a

Diabetic control 0.33 ± 0.12b 0.73 ± 0.22b 0.35 ± 0.06b 15.35 ± 0.06b 1.66 ± 0.06b 3.31 ± 0.14b

Diabetic + Sinapic acid (15mg/kg) 1.88 ± 0.24c 0.85 ± 0.25c 0.41 ± 0.08c 17.33 ± 0.08c 2.31 ± 0.08c 7.49 ± 0.75c

Diabetic + Sinapic acid (30mg/kg) 1.94 ± 0.21d 0.92 ± 0.21d 0.46 ± 0.08d 18.25 ± 0.13d 3.74 ± 0.13d 8.31 ± 0.54d

Each value is mean ± S.D. for six rats in each group. Values not sharing a common superscript (a-d) differ significantly with each other (P<0.05, DMRT). 
 
antioxidants in serum and tissues when compared with 
diabetic control rats. 
 
DISCUSSION 

Formation of lipid peroxides by the action of free radicals on 
unsaturated fatty acids has been implicated in the 
pathogenesis of atherosclerosis and vascular diseases. [30] 

Oxidative stress may cause oxidative damage of cellular 
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membranes and changes in the structural and functional 
integrity of sub-cellular organelles and may produce effects 
that result in various complications in diabetic disease. [31-34]  

In the present study, an increase in the levels of plasma and 
tissue TBARS, an index of lipid peroxidaton and 
hydroperoxides were observed in STZ-induced diabetic rats. 
An observed increase in the levels of TBARS in liver, kidney 
and pancreas may be due to increased susceptibility of the 
tissues of diabetic rats to lipid peroxidaton. An increased 
level of hydroperoxide in the liver, kidney and pancreas 
observed in the study may be due to decrease in the activities 
of antioxidant enzymes, which is favourable factor for 
uncontrolled generation of lipid hydroperoxides. [35] It has 
been reported that an increase in the levels of lipid peroxides 
could be generally thought to be the consequence of 
increased production and liberation into the circulation. [36] 
Diabetic rats treated with Sinapic acid brought lipid 
peroxidation markers back to near normal which could be the 
result of improved antioxidant status. Our result confirmed 
the possibility of the major function of compound Sinapic 
acid may be the protection of vital tissues including liver, 
kidney and pancreas, thereby reducing the causation of 
diabetes. 
A significant decrease in the activity of enzymatic and the 
levels of non- enzymatic antioxidants were observed in STZ- 
induced diabetic rats. Reduced activities of SOD and CAT in 
liver, kidney and pancreas tissues have been observed in 
diabetic rats and this activity may result in a number of 
deleterious effects due to accumulation of superoxide 
radicals and hydrogen peroxide radical. [37] Oral 
administration of Sinapic acid significantly increased the 
activities of SOD and CAT in liver, kidney and pancreas of 
diabetic rats. The higher SOD activity is believed to be due to 
increase dismutation of superoxide anions due to their 
increased production. [38] The result of SOD and CAT 
activity clearly shows that Sinapic acid contains a free radical 
scavenging activity, which could exert a beneficial action 
against pathological alteration caused by the presence of 
superoxide radicals and hydrogen peroxide radical. 
Depression of glutathione peroxidase activity observed in 
diabetic liver and pancreas in the investigation has been 
shown to be an important response to increased peroxidase 
stress. [39] Kashiwagi et al. [40] reported that the elevation of 
glucose concentration reduces the activity of glutathione 
peroxidase, leading to an accumulation of H2O2. Hydrogen 
peroxide catabolism leads to the formation of superoxide 
anion. [41] Gpx in the kidney of diabetic rat increased as 
compared to the control. The decreased catalase activity and 
increased Gpx activity in the kidney suggests that there may 
be compensatory mechanism among the antioxidant enzymes 
in response to increased stress so that tissues lacking 
significant catalase activity may be critically dependent on 
activity of Gpx. Oral administration of Sinapic acid 
significantly decreased the activity of glutathione peroxidase 
in kidney and increased in liver and pancreas of diabetic rats. 
GSH is known to protect the cellular system against the toxic 
effect of lipid peroxidation. [42] Diabetic rats showed a 
significant decrease in the level of GSH in liver, kidney and 
pancreas which have been considered to be an index of 
increased oxidative stress. [43] Depletion of reduced GSH 
either by conjugation and removal from the cell or oxidation 
to GSSG could significantly affect the overall redox potential 
of the cell. [44] Normal GSH levels are maintained via its 

synthesis by γ-glutamyl cysteine synthase, regeneration of 
GSH from GSSH by glutathione reductase and glucose - 6 - 
phosphate dehydrogenase. It has been reported that the 
activities of these enzymes are decreased in diabetic patients 
and animals [45] possibly due to their glycation by 
uncontrolled hyperglycemia and hence leading to decrease in 
the level of GSH. [46] Sinapic acid treated rats showed 
significant elevation in the level of GSH. 
Ceruloplasmin forms a major part of the extracellular 
antioxidant defense. It also inhibits iron and copper 
dependent lipid peroxidation and also has a superoxide 
radical scavenging activity. [47] The diabetic rats in the 
present study showed a significant decrease in the level of 
serum ceruloplasmin which may be due to the generation of 
increased free radicals by STZ. Administration of Sinapic 
acid showed significant reversal of ceruloplasmin level in 
serum of diabetic rats. 
Vitamin C is an excellent hydrophilic antioxidant. Vitamin C 
has been reported to contribute up to 24 percent of total 
peroxyl radical-trapping antioxidant activity. [48] Vitamin C 
also acts as a co-antioxidant by regenerating the vitamin A, E 
and GSH from radicals. [49] A decreased level of vitamin C in 
serum, liver and kidney of diabetic rats reported in the 
present study could be due to the increased utilization of 
vitamin C in deactivation of the increased level of reactive 
oxygen species. GSH is required for the recycling of vitamin 
C. [50-51] Administration of Sinapic acid improved the level of 
vitamin C in serum and tissues of diabetic rats. 
The decreased level of vitamin E found in serum, liver and 
kidney of diabetic rats as compared with the control rats 
could be due to the increased oxidative stress, which 
accompanies the decrease in the level of antioxidant and may 
be related to the causation of diabetes mellitus. [52] Low 
levels of vitamin E observed in STZ induced diabetic rats 
suggest decreased regeneration of vitamin E from its radical. 
Regeneration of vitamin E requires ascorbic acid, an aqueous 
phase antioxidant, which requires GSH. [53] Oral 
administration of Sinapic acid improved the level of vitamin 
E level in serum and tissues of diabetic rats. 
 In conclusion, the present study revealed that Sinapic acid 
possesses a potential antiperoxidative and antioxidant 
activities in STZ-induced diabetic rats by decreasing the 
levels of lipid peroxidation products and increasing the levels 
and activities of antioxidants. The possible mechanism of 
action of Sinapic acid responsible for antioxidant effect needs 
further investigation.  
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