Chemical Constituents of Cycas curanii (J.Schust.) K.D.Hill

Vincent Antonio S Ng¹, Esperanza Maribel Agoo², Chien-Chang Shen³, Consolacion Y. Ragasa¹, ⁴* 

¹Chemistry Department, De La Salle University, 2401 Taft Avenue, 1004 Manila, Philippines
²Biology Department, De La Salle University, 2401 Taft Avenue, 1004 Manila, Philippines
³National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1, Li-Nong St., Sec. 2, Taipei, Taiwan
⁴Chemistry Department, De La Salle University Science & Technology Complex Leandro V. Locsin Campus, Biñan City, Laguna, Philippines

Available Online: 31st December, 2015

ABSTRACT
Chemical investigation of the dichloromethane extract of Cycas curanii led to the isolation of squalene (1), lutein (2), chlorophyll a (3), phytole (4), long chain 1-alkene (5), and triacylglycerols (6) from the leaflets; 1, 6, and β-sitosteryl fatty acid ester (7) from the sarcotesta; 6 and β-sitosterol (8) from the bark; 7 and a mixture of 8 and stigmasterol (9) from the lamina; 6 and 8 from the endotesta; 6, β-sitosterone (10), a mixture of 7 and phytol fatty acid ester (11), and a mixture of 8 and 9 from the petiole; 6 and 8 from the roots; and 8 from the sclerotesta. The structures of 1-11 were identified by comparison of their NMR data with those reported in the literature.

Keywords: Cycas curanii, Cycadaceae, squalene, lutein, chlorophyll a, phytole, β-sitosterol, β-sitosteryl fatty acid ester, β-sitosterone, phytol fatty acid ester

INTRODUCTION
Cycas resemble palms in morphology and are commonly called sago palm. They are considered as fossil plants though they may have evolved only about 12 million years ago. They are widely distributed in the Tropics where they grow on volcanic, limestone, ultramafic, sandy, or even water-logged soils in grassland and forest habitats. The demand of Cycas species for domestic and international horticultural trade, grassland and forest fires, and conversion of their natural habitats to settlements and other land uses have threatened to varying degrees the wild populations of the genus. Some of these threatened species are C. curanii, C. wadei, and C. zamboagensis as Critically Endangered (CR), C. ruminiana as Endangered (E), and C. saxatilis as Vulnerable (V). This study is part of our research on the chemical constituents of the genus Cycas. We earlier reported the isolation of isopimar-an-19-ol (1) from the megasporophyll lamina; 9αH-isopimar-7,15-diene (II) and triacylglycerols (III) from the bark; III, oleic acid (IV), and 1,2-dioleylglycerol (V) from the leaflets; III, β-sitosterol (VI), and stigmasterol (VII) from the petiole and rachis; VI from the roots; and III and VI from the endotesta and sclerotesta of C. lucrimans. In another study, we reported the isolation of III, VI, VII, and squalene (VIII) from the sarcotesta; III, VI, VII, and phytol fatty acid esters (IX) from the endotesta; III, VI, VII, and β-sitosteryl fatty acid esters (X) from the sclerotesta; and III and X from the bark of C. sancti-lasalletii. Another Cycas species, C. vespertilio yielded III, a mixture of VI and VII, pinoresinol (XI), sesamin (XII), and paulownin (XIII) from the cone base; III, VI, VII, XI, XIII, and lariiresinol (XIV) from the cataplylids; VI from the megasporophyll lamina; VI and a mixture of trans-4-hydroxycinnamate fatty acid esters (XV) and cis-4-hydroxycinnamate fatty acid esters (XVI) from the unripe sarcotesta; and III and VI from the ripe sarcotesta. Furthermore, C. vespertilio male cone afforded XI, XIV, III, and fatty alcohols. Recently, we reported the isolation of 2-[2-hydroxy-5-(3-hydroxypropyl)-3-methoxyphenyl]-1-(4-hydroxy-3-methoxyphenyl)propane-1,3-diol (XVII), XI, and fatty alcohols from the leaflets; and III, VI and VII from the petiole and rachis of Cycas aenigma. We report herein the isolation of squalene (1), lutein (2), chlorophyll a (3), phytole (4), long chain 1-alkene (5), and triacylglycerols (6) from the leaflets; 1, 6, and β-sitosterol fatty acid ester (7) from the sarcotesta; 6 and β-sitosterol (8) from the bark; 7 and a mixture of 8 and stigmasterol (9) from the lamina; 6 and 8 from the endotesta; 6, β-sitosterone (10), a mixture of 7 and phytol fatty acid ester (11), and a mixture of 8 and 9 from the petiole; 6 and 8 from the roots; and 8 from the sclerotesta. The structures of 1-11 were identified by comparison of their NMR data with those reported in the literature.

MATERIALS AND METHODS
General Experimental Procedure
NMR spectra were recorded on a Varian VNMRS spectrometer in CDCl₃ at 600 MHz for ¹H NMR and 150 MHz for ¹³C NMR spectra. Column chromatography was performed with silica gel 60 (70-230 mesh). Thin layer
chromatography was performed with plastic backed plates coated with silica gel F254 and the plates were visualized by spraying with vanillin/H2SO4 solution followed by warming.

Sample Collection

*Cycas curanii* were collected in 2015. Voucher specimens were collected and authenticated by one of the authors (EMGA) and deposited in the De La Salle University-Manila Herbarium (DLSUH3113).

General Isolation Procedure

A glass column 18 inches in height and 1.0 inch internal diameter was used for the fractionation of the crude extracts. Ten milliliter fractions were collected. Fractions with spots of the same Rf values were combined and rechromatographed in appropriate solvent systems until TLC pure isolates were obtained. A glass column 12 inches in height and 0.5 inch internal diameter was used for the rechromatography. Five milliliter fractions were collected. Final purifications were conducted using Pasteur pipettes as columns. One milliliter fractions were collected.

Isolation of chemical constituents from the leaflets

The air-dried leaflets of *C. curanii* (255.5 g) were ground in a blender, soaked in CH2Cl2 for 3 days and then filtered. The filtrate was concentrated under vacuum to afford a crude extract (3.7 g) which was chromatographed using increasing proportions of acetone in CH2Cl2 at 10% increment. The CH2Cl2 fraction was rechromatographed (2 ×) using petroleum ether to yield 1 (2 mg) and 5 (3 mg). The 20% acetone in CH2Cl2 fraction was rechromatographed using 10% EtOAc in petroleum ether. The less polar fractions were combined and rechromatographed (3 ×) using 7.5% EtOAc in petroleum ether to yield 4 (2 mg). The 30% acetone in CH2Cl2 fraction was rechromatographed (4 ×) using 20% EtOAc in petroleum ether to provide 3 (5 mg) after washing with petroleum ether, followed by Et2O. The 60%
acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using CH₂Cl₂:EtOAc:CH₂Cl₂ (1:1:8, v/v) to yield 2 (5 mg) after washing with petroleum ether, followed by EtOAc.

Isolation of chemical constituents from the sarcotesta
The air-dried sarcotesta of C. curanii (110.5 g) were ground in a blender, soaked in CH₂Cl₂ for 3 days and then filtered. The filtrate was concentrated under vacuum to afford a crude extract (3.2 g) which was chromatographed using increasing proportions of acetone in CH₂Cl₂ at 10% increment. The CH₂Cl₂ fraction was rechromatographed using petroleum ether. The less polar fractions were combined and rechromatographed (2 ×) using petroleum ether to afford 1 (2 mg). The more polar fractions were combined and rechromatographed (3 ×) using 2.5% EtOAc in petroleum ether to afford 2 (4 mg). The 20% acetone in CH₂Cl₂ fraction was rechromatographed (2 ×) using 7.5% EtOAc in petroleum ether to provide 6 (4 mg).

Isolation of chemical constituents from the bark
The air-dried bark of C. curanii (95.5 g) were ground in a blender, soaked in CH₂Cl₂ for 3 days and then filtered. The filtrate was concentrated under vacuum to afford a crude extract (0.2 g) which was chromatographed using increasing proportions of acetone in CH₂Cl₂ at 10% increment. The 20% acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using 7.5% EtOAc in petroleum ether to afford 6 (3 mg). The 40% acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using CH₂Cl₂ to yield 8 (5 mg) after washing with petroleum ether.

Isolation of chemical constituents from the lamina
The air-dried lamina of C. curanii (33 g) were ground in a blender, soaked in CH₂Cl₂ for 3 days and then filtered. The filtrate was concentrated under vacuum to afford a crude extract (0.4 g) which was chromatographed using increasing proportions of acetone in CH₂Cl₂ at 10% increment. The CH₂Cl₂ fraction was rechromatographed (3 ×) using 5% EtOAc in petroleum ether to yield 7 (4 mg). The 40% acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using CH₂Cl₂ to afford a mixture of 8 and stigmasterol (9) (5 mg) after washing with petroleum ether.

Isolation of chemical constituents from the endotesta
The air-dried endotesta of C. lacrimans (91 g) were ground in a blender, soaked in CH₂Cl₂ for 3 days and then filtered. The filtrate was concentrated under vacuum to afford a crude extract (0.25 g) which was chromatographed using increasing proportions of acetone in CH₂Cl₂ at 10% increment. The 20% acetone in CH₂Cl₂ fraction was rechromatographed (2 ×) using 7.5% EtOAc in petroleum ether to yield 6 (4 mg). The 40% acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using 20% EtOAc in petroleum ether to afford 8 (5 mg) after washing with petroleum ether.

Isolation of chemical constituents from the petiole
The air-dried petiole of C. curanii (77 g) were ground in a blender, soaked in CH₂Cl₂ for 3 days and then filtered. The filtrate was concentrated under vacuum to afford a crude extract (0.3 g) which was chromatographed using increasing proportions of acetone in CH₂Cl₂ at 10% increment. The 20% acetone in CH₂Cl₂ fraction was rechromatographed using 7.5% EtOAc in petroleum ether. The less polar fractions were combined and rechromatographed (3 ×) using the same solvent to afford 6 (4 mg). The more polar fractions were combined and rechromatographed (3 ×) using 10% EtOAc in petroleum ether to yield a mixture of 7 and 11 (5 mg). The 30% acetone in CH₂Cl₂ fraction was rechromatographed (2 ×) using 15% EtOAc in petroleum ether to afford 10 (2 mg) after washing with petroleum ether.

Isolation of chemical constituents from the roots
The air-dried roots of C. curanii (20.5 g) were ground in a blender, soaked in CH₂Cl₂ for 3 days and then filtered. The filtrate was concentrated under vacuum to afford a crude extract (0.1 g) which was chromatographed using increasing proportions of acetone in CH₂Cl₂ at 10% increment. The 10% acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using 7.5% EtOAc in petroleum ether to afford 6 (2 mg). The 40% acetone in CH₂Cl₂ fraction was rechromatographed (3 ×) using 15% EtOAc in petroleum ether to provide 8 (3 mg) after washing with petroleum ether.

RESULTS AND DISCUSSION
Silica gel chromatography of the dichloromethane extracts of C. curanii led to the isolation of squalene (1)¹³, lutein (2)¹⁴, chlorophyll a (3)¹⁵, phytol (4)¹⁶, long chain 1-alkene (5)¹⁷, and triacylglycerols (6)¹³ from the leaflets; 1, 6, and β-sitosteryl fatty acid ester (7)⁹ from the sarcotesta; 6 and β-sitosteryl (8)¹³ from the bark; 7 and a mixture of 8 and stigmasterol (9)¹³ from the lamina; 6 and 8 from the endotesta; 6, β-sitosterenol (10)¹⁸, a mixture of 7 and phytol fatty acid ester (11)⁷, and a mixture of 8 and 9 from the petiole; 6 and 8 from the roots; and 8 from the sclerotesta. The structures of 1-11 were identified by comparison of their NMR data with literature data. These results indicate that C. curanii shares similar chemical characteristics with other members of the genus Cycas and the family Cycadaceae: C. sancti-lasallei which contained 1 and 7-10; C. vespertilio¹⁰¹¹, C. aenigma², and C. lacrimans⁵ which yielded 6, 8, and 9. To our knowledge, this is the first report on the isolation of 1-11 from C. curanii.

ACKNOWLEDGEMENTS
A research grant from the Commission on Higher Education –Philippine Higher Education Research Network (CHED–PHERNet) of the Philippines is gratefully acknowledged.
REFERENCES