Oxidative and Chlorinative Stress Biomarkers in Liver Cells of Rats Exposed to Cyanide In-Vitro

Iwan Aflanie¹, Nila Nirmala Sari¹, Eko Suhartono²

¹Department of Forensic Medicine, Ulin General Hospital/Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
²Department of Medical Chemistry/ Biochemistry, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia

Available Online: 15⁰ October, 2016

ABSTRACT
Cyanide is one of the rapid acting poisons. Exposure to cyanide can cause several health problems, including liver cells damaged. However, the mechanism of liver cells damage by cyanide still not clear. In this present study, we proposed that cyanide could induced liver cells damaged via oxidative and chlorinative stress pathway. Thus, our study aimed to investigated the effect of cyanide on liver cells via oxidative and chlorinative stress pathway by measuring the levels of hydrogen peroxide (H$_2$O$_2$), malondialdehyde (MDA), Advanced Oxidation Protein Products (AOPPs), the myeloperoxidase (MPO) activity, and the chlorinative index (CI). The results revealed that cyanide exposure positively correlated with H$_2$O$_2$, MDA, AOPPs level, and CI, and negatively correlated with MPO activity in liver cells homogenate. These results indicated that cyanide exposure induce liver cells damage through the oxidative and chlorinative stress pathway which can be seen from the correlation between cyanide exposure and the levels of H$_2$O$_2$, MDA, and AOPPs, the activity of MPO, and the CI.

Keywords: Chlorinative Stress, Cyanide, Oxidative Stress

INTRODUCTION
Cyanide is one of the most deadly rapid-acting poisons. Cyanide toxicity is generally considered to be a rare form of poisoning¹. Although less frequent than another poisoning, cyanide possesses significant physical harm, due to its rapid and potentially fatal adverse effects². Recently, this compound was popular especially in Indonesia. It is because the case of Australian student with Indonesia citizenship, named Jessica Kumolo Wongso, who is a murder suspect in the case of cyanide-laced coffee in Indonesia³. Cyanide is one of the most toxic chemical substances on Earth. Cyanide may be produced by toxic gases during the pyrolysis of plastic or nitrile-based polymer fibres, by extracts of plants containing cyanogenic glycosides (e.g. cassava) or from industrial waste (e.g. electroplating)⁴. The extreme toxicity of cyanide arises from its readiness to react with other elements and hence interfere with normal biological processes⁵. Both acute and chronic exposures of cyanide can cause severe poisoning in human and animals⁶. Experimental studies on different animal species have shown that prolonged sublethal cyanide exposure can induce pathologic effects on various organs, including liver⁷. The mechanisms by which cyanide exert its effects to liver have not all been fully elucidated. It is also widely accepted that cyanide itself stimulates production of intracellular reactive oxygen species (ROS). It is thought that cyanide exposure causes rising of oxidative stress by glutathione (GSH) depletion and inhibition of a series of antioxidant enzymes. Also, it is reported that cyanide exposure increases levels of ROS and reactive nitrogen species (RNS) and the amount of lipid peroxidation⁸. The increasing of ROS by cyanide will increase the concentration of hydrogen peroxide (H$_2$O$_2$) to form radical hydroxyl with the presence of transition metal⁹–¹¹. These ROS can randomly react with lipids, proteins and nucleic acids causing oxidative stress and damage in these macromolecules. When ROS target lipids, they can initiate the lipid peroxidation process, a chain reaction that produces multiple breakdown molecules¹². Among these multiple breakdown molecules, malondialdehyde (MDA) is the one of the most well studied markers of lipid peroxidation¹³–¹⁵. However, the increasing concentration of H$_2$O$_2$ also have another effect. H$_2$O$_2$ can be used by myeloperoxidase enzyme (MPO) to produce another oxidants, known as hypochlorous acid (HOCl)⁶. HOCl can promote a further reaction resulted in a condition known as chlorinative stress¹⁶–¹⁹. According our previous study, chlorinative stress can be measured by calculating both the ratio between H$_2$O$_2$ level and MPO activity, known as chlorinative index (CI) and the level of Advance Oxidation Protein Products (AOPPs)²⁰–²¹. Based on the fact that oxidative and chlorinative stress may be involve in cyanide toxicity. Thus, we hypothesized that, cyanide-induced liver cells damage may follow the oxidative and

*Author for Correspondence:ekoantioxidant@gmail.com
chlorinative stress pathway; and we designed the present study to explore this hypothesis by measured several parameters, such as H$_2$O$_2$, MDA and AOPPs levels, MPO activity, and CI value in liver cells homogenate.

MATERIAL AND METHODS

Animals and Homogenate Preparation

Male rats (*Rattus norvegicus*) weighing 200–250 gram with 2-3 months old were obtained from the Abadi Jaya farm at Yogyakarta, Indonesia, in healthy condition. The experiment was approved by the Ethical Committee from the Lambung Mangkurat University, South Kalimantan, Indonesia. Animals were fed under standard conditions and acclimatized with a 12 hours light/dark cycle. The animals were sacrificed by surgical procedure and the livers was removed. Then, the organs homogenized in phosphate buffer saline (pH 7.0) and was ready to used for in vitro experimental models.

Experimental Models

The present study was an experimental study design to examine the liver cells damage induced by cyanide through the oxidative and chlorinative stress pathway. Liver cells will exposed to different concentration of cyanide. The cyanide concentrations were 0 mg/l, 0.5 mg/l, 1 mg/l, and 2 mg/l. Each solution then incubated at 37°C for 3 hour. After incubation, liver H$_2$O$_2$, MDA, and AOPPs levels, MPO activity, and CI were estimated.

H$_2$O$_2$ level analysis

H$_2$O$_2$ level was calculated by the FOX2 method with slight modification. Solutions measured spectrophotometrically at λ = 505 nm. Standard and test solutions consisted of 1 M H$_2$O$_2$, 200 μL, and 200 μL serum, respectively, with the addition of 160 μL PBS pH 7.4, 160 μL FeCl$_3$ (251.5 mg FeCl$_3$ dissolved in 250 ml distilled water) and 160 μL o-fenanthroline (120 mg o-phenanthroline dissolved in 100 ml distilled water) for both solutions. The composition of the blank solution was identical to that of the test solution, except for absence of FeCl$_3$ in the blank. Subsequent to preparation, all solutions were incubated for 30 minutes at room temperature, then centrifuged at 12,000 rpm for 10 minutes, and the absorbance of the standard (As), test (Au) and blank (Ab) solutions measured at λ=505 nm, using the supernatant of each solution.

MDA level analysis

MDA level was calculated by thiobarbituric acid reactive substances (TBARS) by the technique already proposed by Buege and Aust. The supernatant were put into a Pyrex tube that contained 10% of trichloroacetic acid and 0.67% of TBARS and incubated at 100°C for 15 min. Then chill the mixture on ice for 5 min and add the 1.5 ml of n-butyl-liquor. Let the mixture stand for 40 s and centrifuged at 1000 rpm for 15 min. The TBARS value was calculated by the spectrophotometer at the absorbance of 532 nm and figured utilizing the coefficient 1.56 × 105 mol/cm. The MDA concentration expressed in μmol MDA.As a standard solution we used commercially MDA.

MPO activity analysis

MPO activity was measured spectrophotometrically using o-dianisidine (Sigma-Aldrich) and H$_2$O$_2$. In the presence of H$_2$O$_2$ as oxidizing agent, MPO catalyses the oxidation of o-dianisidine yielding a brown coloured product, oxidized o-dianisidine, with a maximum absorbance at 470 nm. One unit (U) of MPO activity was defined as that degrading 1 μmol of H$_2$O$_2$ per minute at 25°C.

Chlorinative index analysis

Chlorinative index was a ratio between H$_2$O$_2$ level and MPO activity. Chlorinative index was calculated following to equation:

\[
CI = \frac{\text{Hydrogen Peroxide Level}}{\text{MPO Activity}}
\]

AOPPs concentration analysis

AOPPs concentration analysis were calculated by spectrophotometric methods which was first performed by Witko-Sarsat *et al*. with slight modification. 200 μl of supernatant from the liver homogenate were diluted with phosphate buffer solution. Then, placed on 96-test wells. Add 20 ml of acetic acid in each test well. For the standard, add 10 ml of 1.16 mol potassium iodide, 200 ml of chloramine-T solution (0–100 mmol/l), and 20 ml of acetic acid. Placed the standard mixture into standard wells. Then, read the absorbance of the mixture at 340 nm. The absorbance was read against a blank solution. A blank solution is a mixture between 200 ml of phosphate buffer solution, 10 ml of potassium iodide, and 20 ml of acetic acid. AOPPs concentrations were expressed as μmol/l of chloramine-T equivalents.

Statistical analysis

The results were expressed as mean±SE for six replicates. The data was analysed between each parameter level and cyanide concentration. For analyzing the data, microsoft excell 2010 was used and was examined by simple correlation regression.

RESULTS AND DISCUSSION

In this present study, to investigate the involvement of oxidative stress in cyanide-induced liver cells damage, the level of liver H$_2$O$_2$ and MDA was investigated. The results shows in figure 1 and 2. Cyanide exposure caused the increasing of liver H$_2$O$_2$ and MDA levels. From figure 1 and 2, we can see that the increasing of cyanide concentration can increase the level of both H$_2$O$_2$ and MDA. Cyanide concentration was strong positively correlated with liver H$_2$O$_2$ and MDA (rH$_2$O$_2$: 0.906; rMDA: 0.992). The results of this present study shows that cyanide have a strong positive correlation with liver H$_2$O$_2$ and MDA level. It means the increasing level of cyanide in liver will increase both H$_2$O$_2$ and MDA level. The results in this study confirm that cyanide exposure increase oxidative stress and lipid peroxidation in the brain and kidney of mice and rats. It is been widely accepted that cyanide-induced cellular oxidative stress, i.e., increase of superoxide anions, lipid peroxide, hydroxide radicals, hydrogen peroxide and others, appears to arise through multiple pathways. At the cellular level, cyanide produces chemical hypoxia by
inhibiting cytochrome c oxidase in complex IV of the mitochondrial oxidative phosphorylation chain to markedly reduce ATP27. Furthermore, it can block the flow of electrons through complex IV to prevent oxidative metabolism and enhance ROS generation at complex III26. Another mechanism that cyanide-induced cellular oxidative stress is inhibits antioxidant enzymes like GPx and depletes non-enzymatic antioxidants like intracellular GSH28. It was also reported that cyanide causes an increase in lipid peroxidation and a decrease in GSH levels, and GPx, SOD, and CAT activities in liver of rats29. Okolie and Iroanya30 reported inhibition of SOD and CAT in liver, kidney and lung tissues of the cyanide treated rabbits. Such enzymes containing metal porphyrins as peroxidase, CAT and xanthine oxidase are inhibited strongly by cyanide31. MPO activity in the liver that received different doses of cyanide are presented in the Figures 3. After the administration cyanide, MPO activity seems to be decreased (Figure 2). There was a dose dependent decrease in MPO activity in the liver tissues. Cyanide concentration was strong negatively correlated with liver MPO activity. MPO is a member of peroxidase. MPO is a heterodimeric, cationic and glycosylated haem enzyme31. The basic reaction of MPO is decompose H$_2$O$_2$ into water and oxygen32. In the other hand, in several conditions, MPO also decompose the oxidation of chloride to HOCl33. The results of this present study shows that cyanide interrupt the MPO activity. The interruption of MPO activity by cyanide may be cause by the effect of cyanide to induce a chlorinative stress condition. It is based on our several results study. Based on our several results, the presence of H$_2$O$_2$ which in this study induced by cyanide, can activated MPO to promote a further reaction to form HOCl and induce a condition, known as chlorinative stress17,19-20. To prove it, in this present study we measured another two parameters that indicate chlorinative stress, such as AOPPs and CI (figure 4 and 5). From figure 4 and 5, we can see that cyanide exposure in liver is strong positively correlated with AOPPs level and CI. This two parameters indicated that cyanide...
exposure induce chlorinative stress in liver. AOPPs is a novel markers of oxidant-mediated protein damage by the reaction of plasma proteins with chlorinated oxidants. Since AOPPs formed by chlorinated oxidants, it can also used as chlorinative stress condition. Besides AOPPs, chlorinative stress can also be seen by CI. It is based on previous research by Hartoyo which investigated the involvement of chlorinative stress in dengue hemorrhagic fever patients. Also, another previous study by Marisa and Kania in anti-tuberculosis medicine and iron induced liver toxicity through the chlorinative stress pathway. In conclusion, the present study demonstrated that cyanide induced oxidative and chlorinative stress as can be seen from the level of \(H_2O_2, MDA,\) and AOPPs, the activity of MPO, and the CI in liver cells.

CONFLICT OF INTEREST

We declare that we have no conflict of interest.

REFERENCES

