The Antimicrobial Activity of Moroccan Lavaender Esssentiel Oil Against Bacterial Pathogens Isolated Urinary Tract Infections

Ez Zoubi Y1,2*, El Ouali Lalami A2,3, Bousta D4, Polissiou M5, Daferera D5, Lachkar M6, El Khanchoufi A4, Farah A1

1Laboratory of Applied Organic Chemistry, Faculty of Sciences and Technology, Sidi Mohamed Ben Abdellah University, Po. Box 2202 – Route d’Imouzzer, Fez, Morocco.
2Regional Diagnostic Laboratory of Epidemiological and Environmental Health, Regional Health Directorate, EL Ghassani Hospital, Fez 30000, Morocco.
3Institute of Nursing Professions and Health Techniques of Fez (Annex Meknes), Regional Health Directorate, EL Ghassani Hospital, Fez 30000, Morocco.
4Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
5Laboratory of Chemistry, Agricultural University of Athens, Department of Food Science and Nutrition, 75 Iera Odos, 118 55, Athens, Greece.
6Engineering Laboratory of Organometallic and Molecular Materials (CNRST, URAC 19), Faculty of Sciences, University Sidi Mohamed Ben Abdellah, Po. Box 1796 (Atlas), 30000 Fez, Morocco.

Available Online: 15th November, 2016

ABSTRACT
Lavandula stoechas genus is an important member of family Lamiaceae, it is widely distributed in north Provinces of Morocco and is used in traditional medicine to treat various diseases. In order to evaluate the antimicrobial effect of Lavandula stoechas essential oil as well as to compare its inhibitory effect versus commercial Antibiotics, it was tested against urinary isolates bacteria such as Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, Proteus mirabilis and Pseudomonas aeruginosa. The chemical compounds of essence of Lavandula stoechas were identified by GC-MS analysis. The paper disk agar diffusion method and the macrodilution assay for determination of Minimum Inhibitory and Minimum Bactericidal Concentrations (MIC and MBC) were used. The main compounds of essential oil obtained were camphor, fenchone, camphene, borneol, α-pinene and 1,8-cineole. Lavandula stoechas essential oil was very active against Staphylococcus aureus with inhibition zone of 17.2 ±0.8 mm and moderately active against Escherichia coli, Klebsiella pneumonia, Proteus mirabilis and Pseudomonas aeruginosa. MICs for Lavandula stoechas indicated that the best values were unregistered for Staphylococcus aureus and Klebsiella pneumonia with equal value of 2.5μg/mL, followed by Escherichia coli and Pseudomonas aeruginosa with MIC values of 5μg/mL for each bacterium. Ofloxacin had the widest coverage against all bacteria’s, followed by Chloromphenicol. Cephalosporin’s third generation, Gentamicin and Amikacin have presented an average activity against pathogens. The bacteria of Escherichia coli, Staphylococcus aureus and Klebsiella pneumonia have been resistant for Penicillin antibiotics. The results showed that the essential oil of Lavandula stoechas was revealed highly inhibitory antimicrobial activity especially on gram positive bacteria (Staphylococcus aureus) and can be used instead of chemical drugs to treat bacterial infections.

Keywords: Lavandula stoechas, Essential oil, Chemical composition, Antibacterial activity, Urinary Tract Infections (UTI), Morocco.

INTRODUCTION
Urinary Tract Infection (UTI) represents one of the most common diseases occurring in the neonate to the geriatric age groups encounters in medical practice today1. More than 95% of UTI are caused by single bacterial species E. coli which is the most frequently infecting organisms2. However, many other bacteria can also meet and lead to infections for example, Klebsiella, Pseudomonas, Enterobacter, Proteus, Staphylococcus, Mycoplasma, Chlamydia, Serratia and Neisseria sp. It is reported that about 35% of healthy women suffer symptoms of urinary tract infection and about 5% of women each year suffer with the problem of painful urination (dysuria) and frequency3. A study realized at the Avicenne Teaching Hospital (Marrakech, Morocco) from 2010 to 2012 showed that Escherichia coli and K. pneumoniae have been reported to be the most common organisms causing UTI. This is demonstrated by the prevalence of these two pathogens in the epidemiology of both nosocomial and community-acquired UTIs. Although E. coli is a more common cause of UTIs (63%) and the prevalence of K. pneumoniae species has been 22%, and it was isolated in 10% and 28% of the urine samples in the Meknes3 and Rabat6 regions respectively. Thus, in light of

*Author for Correspondence: ezzoubiyassine@yahoo.fr
the evidence of rapid global spread of resistant clinical isolates, the need to find new antimicrobial agents is of paramount importance. However, the past record of rapid, widespread emergence of resistance to newly introduced antimicrobial agents indicates that even new families of antimicrobial agents will have a short life expectancy. For this reason, researchers are increasingly turning their attention to herbal products, looking for new leads to develop better drugs against microbe strains with ultimate goal to provide efficient drugs to the patient. Finding healing powers in plants is an ancient idea. People on all continents have long applied poultices and imbibed infusions of hundreds, if not thousands, of indigenous plants, dating back to prehistory9. The lavenders are a genus of about 25-30 species of flowering plant in the mint family, Lamiaceae, native of Mediterranean region south to tropical Africa and many regions of Asia and it has been used for centuries as an herbal remedy for many ailments10,11. One species of this genus is *Lavandula stoechas* (*L. stoechas*), which is one of the most explored and exploited lavenders in the world. Some studies focused on the antibacterial12,13, anti-inflammatory14, antifungal15, insecticidal16 and antioxidiant properties of *L. stoechas*. This plant is used traditionally in Morocco for the treatment of painful illnesses like inflammatory diseases, cystitis, nephritis and rheumatic arthritis17. The present study, realized in the first time in Morocco, made an attempt to find out the chemical composition and the antibacterial activity of essential oil of *L. stoechas* as well as to compare its inhibitory effect versus commercial antibiotics against five bacteria’s urinary tract infections bacterial pathogens isolates.

MATERIAL AND METHODS

Plant material and extraction of the Essential Oil

The aerial parts (leaves, stems and wood) of *L. stoechas* are collected in Taounate Province/Morocco, between April and June 2015. The botanical identification and authenticated voucher specimens have been deposited in the Herbarium of the National Institute of Medicinal and Aromatic Plants, Sidi Mohamed Ben Abdellah University, Fez, Morocco. Samples of 100g of the fresh aerial parts of *L. stoechas* were subjected to hydrodistillation for 2 hours using a Clevenger apparatus; the obtained Essential Oil (EO) was stored at 4°C so that the EO may be used in the upcoming experiments.

Chemical characterization of essential oil of L. stoechas

The analysis of the essential oils was carried out on a Hewlett Packard 5890 II GC coupled with a Hewlett Packard 5972 MSD operating in the EI mode at 70 eV. A non-polar OPTIMA-5 capillary column (30 m × 0.25 mm, film thickness 0.25 µm) used with a programmed temperature gradually increased from 60°C to 250°C by a rate of 3°C/min. Injector and MS transfer line temperatures were set at 220°C and 290°C, respectively. Diluted samples (1/100 in acetone v/v) were injected in the splitless mode. Helium, the carrier gas, was at 2.5 psi. Identification of the compounds was based on the comparison of their relative retention indexes and mass spectra with those of NIST 98, Wiley 275 library data19. The percentages relative of the compounds were obtained electronically from area percent data. Kovats index for each compound on OPTIMA-5 column was calculated in reference to n-alkanes.

Antimicrobial activity

Microorganisms

The antimicrobial activity of *L. stoechas* essential oil was tested against *Escherichia coli* (*E. coli*), *Staphylococcus aureus* (*S. aureus*), *Proteus mirabilis* (*P. mirabilis*), *Klebsiella pneumonia* (*K. pneumonia*) and *Pseudomonas aeruginosa* (*P. aeruginosa*) isolated from patients having urinary infection in nephrology service at Hassan II University Hospital at Fez city (Morocco), these bacteria were identified and confirmed by classical biochemical gallery and the API (bioMérieux, France).

Disc diffusion assay

Antimicrobial susceptibility test of the essential oil and fractions was tested against the above mentioned Gram positive and Gram negative bacteria by disc diffusion method20. The susceptibility tests were performed on Muller–Hinton Agar, 10 µL of essential oil was diluted with two volumes of 5% dimethylsulfoxide (DMSO) and impregnated on the filter paper discs and used for the study. Ampicillin, Amoxicillin, Chloromphenicol, Ofloxacim, Cefotaxim, Ceftriaxon, Gentamicin, Cefaclor and Amikacin were used as positive reference standards to determine the sensitivity of the tested strains and 5% DMSO was used as blind control. Finally, the petri dishes inoculated, were incubated at 37°C for 24 h and the inhibition zones were observed according to the guidelines of the Antibiogram Committee of the “Société Française de Microbiologie” (CA-SFM)21.

Determination of Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC)

The test oils of *L. stoechas* and its fractions were dissolved in 5% DMSO to obtain 1000 µl/mL stock solution. 0.5 mL of stock solution was incorporated into 0.5 mL of Mueller Hinton broth to get the concentration of 500 µl/mL and serially diluted to achieve 0.62, 1.25, 2.5, 5, 10, 20, 40 and 80 µl/mL. Fifty microliter of standardized suspension of the test organism was transferred on to each tube. The control tube contained only organisms and not the essential oil and 5% DMSO was used as blind control. The culture tubes were incubated at 37°C for 24 hours. The lowest concentrations, which did not show any growth of tested organisms after macroscopic evaluation was determined as MIC22. Referring to results of the MIC assay, the MBC was determined. Fifty microliters from each dilution of essential oil and fractions, showing growth inhibition zone in disc diffusion method, were added to 5 mL of Tripticase Soy Agar (TSA) broth tubes then incubated at 37°C for 24 hours in an incubator shaker. From tubes without microbial growth, 0.1 mL of cells was spread on TSA agar plates. MBCs were determined as the highest dilution at which no growth occurred on the plates.

Statistical analysis
The values are presented as the mean ± SEM of triplicate analysis using one-way analysis of variance (ANOVA).

RESULTS
Component analysis of essential oils of L. stoechas
GC/MS analysis of L. stoechas essential oil led to the identification of 27 components that were characterized representing 98.2% of the total oil, of which camphor 47.2%, fenchone 33.3%, camphene 3.3%, borneol 2.9%, α-pinene 2.9% and 1,8-cineole 1.4%, were the major components (Figure 1). The percentage compositions of remaining 21 compounds ranged from 0.1% to 1.2%. The constituents of Lavandula stoechas were the major constituents in this oil (91.2%) followed by Monoterpene hydrocarbons (7.1%), Oxygenated sesquiterpenes (0.8%) and Sesquiterpene hydrocarbons (01%).

Antimicrobial activities
Disc diffusion study
The in vitro results of antibacterial activity of the EO of L. stoechas by the paper disk agar diffusion method against microorganisms are summarized in Table 1. The essential oil of L. stoechas was very active against S. aureus with inhibition zone 17.2 ±0.8 and moderately active against E. coli, K. pneumonia, P. mirabilis and P. aeruginosa showed an inhibition zone between 12.5 ±0.6 and 14.5 ±1.3 mm. Among the antibiotics (Table 2), Ofloxacin had the widest coverage against all bacteria’s (between 14.5±1.5 and 25.4±3.2 mm), followed by Chloromphenicol (between 14.4±2.2 and 20.4±2.3 mm). Cephalosporin’s third generation (Cefotaxin and Ceftriaxoxon), Gentamicin and Amikacin have presented an average activity against pathogens with diameter of inhibitions zones between 12.5±1.3 and 15.7±1.6 mm, but Ceftriaxon and Gentamicin showed high activity against P. mirabilis and S. aureus with diameter inhibition at 18±1.4 and 17.2±2.2 mm respectively. Penicillin (Ampicillin and Amoxicillin) have showed poor activity against P. mirabilis. On the other hand E. coli, S. aureus and K. pneumonia bacteria were resistant to these antibiotics.

Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
The antimicrobial activity of L. stoechas was confirmed by the macrodilution assay (Table 3). L. stoechas EO exhibited much higher antibacterial activity with the MIC values of 2.5 μl/ml against S. aureus and K. pneumonia. The MICs of E. coli and P. aeruginosa values were 5 μl/ml and MBC= 10 μl/ml. P. mirabilis showed the lowest antibacterial activity in the macrodilution method, MIC at 10 μl/ml and MBC at 20 μl/ml.

DISCUSSION
In the present work, realized for the first time in the North east of Morocco, we are interested in examining the chemical composition and antimicrobial activity against pathogen bacteria as well as to compare its inhibitory effect versus commercial Antibiotics. Our chemical composition of EO results is in accordance with other studies related to L. stoechas, the total mass of sex major components (camphor, fenchone, camphene, borneol, α-

<table>
<thead>
<tr>
<th>Microorganisms</th>
<th>Inhibition zone diameter of L. stoechas (10 μl/disc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>14.5 ±1.3</td>
</tr>
<tr>
<td>S. aureus</td>
<td>17.2 ±0.8</td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>14 ±1.4</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>13.3 ±0.3</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>12.5 ±0.6</td>
</tr>
</tbody>
</table>

- Values represent averages ± standard deviations for triplicate.
- Inhibition zone including disc diameter (6 mm).

pinene and 1,8-cineole) in Lavandin essential oil to be 91% of the total mass of essential oil. This plant is characterized by significant variations in the amounts of fenchone, camphor, and 1,8-cineole, being the fenchone/camphor chemotype the most commonly identified. The analysis of L. stoechas oil from Greece oil found α-Cardinol (7.2%) in addition to fenchone, camphor and 1,8 cineole compounds.

The different qualitative and quantitative chemical compositions of the EO could be explained by different environmental conditions, genetics (degree of hybridization), geographical origin, part of plant extract and harvest period. Due to the emergence of antibiotic resistant pathogens in hospitals and homes, plants are being looked upon as an excellent alternate to combat the further spread of multidrug resistant microorganisms. In this study, the essential oil of L. stoechas showed good antimicrobial activity against S. aureus, E. coli, K. pneumonia, P. mirabilis and P. aeruginosa isolated from patients having urinary infection in Nephrology service at Hassan II University Hospital. The in vitro MIC value indicated that concentration 2.5μg/mL of essential oil is sufficient to inhibit S. aureus and K. pneumonia. The MIC and MBC values of E. coli and P. aeruginosa was found that 5μg/mL and 10μg/mL respectively for each bacteria. Cherrat et al. were tested Moroccan L. stoechas EO towards five Gram-positive and four Gram-negative bacteria and showed great efficacy against Gram-positive bacteria but poorer against Gram-negative, especially against E. coli O157, Listeria monocytogenes, and S. aureus with inhibition zone of 16.2 ± 0.60, 32.0 ± 2.00 and 28.0 ± 0.70 mm respectively. A very effective antibacterial capacity was noted and proven in vitro against S. aureus, E. coli, K pneumoniae and P. aeruginosa by Gören et al.
The limited number of published studies about the antimicrobial activity of L. stoechas EO, such as those from Gören et al.31, Bouzouita et al.32 and Cherrat et al.30, confirms its strong antimicrobial activity, similar to other sesquiterpenes-rich EOs. Camphor the major component of L. stoechas EO analyzed has antibacterial properties itself33. Moreover, it has been demonstrated that 1,8 cineole presents antimicrobial activity against bacteria such as S. aureus and E. coli34. Other study suggests the synergistic effect of minor components in the chemical composition of the EOs in relation to its antimicrobial activity35. The gram positive bacterium is more susceptible to the antimicrobial properties of essential oil than gram negative bacteria and it is considered to be due to its outer membrane32. However, contrary to our study, according to Prabuseenivasa et al.36 reported that E. coli and S. aureus were resistant to Lavender oil. The results of antibiotic susceptibility test of the bacterial isolates indicated that E. coli, S. aureus and K. pneumonia were resistant to Ampicillin and Amoxicillin. The acquisition of resistance to Penicillin antibiotics is a global phenomenon showing widely varying occurrence rates. In the Marrakech region, antimicrobial resistance of urinary K. pneumoniae isolates to amoxicillin has been reported to be similar to the resistance rates reported in the Rabat region (Morocco)6 and in Algeria37.

CONCLUSION

The essential oil of L. stoechas was chemically analyzed and antimicrobial activity in vitro against clinical bacteria was conducted. 27 components were identified, of which camphor, fenchone, camphene, borneol, α-pinene, and 1,8-cineole, were the major components. The essential oil of L. stoechas was revealed highly inhibitory antimicrobial activity against S. aureus and moderately active against E. coli and K. pneumonia. P. mirabilis and P. aeruginosa. Ofloxacin had the widest coverage against all bacteria’s followed by chloromphenicol Cephalosporin’s third generation; gentamicin and amikacin have presented an average activity against pathogens. E. coli, S. aureus and K. pneumonia bacteria were resistant to the Penicillin antibiotics. The oil of L. stoechas can have application in therapy of the infectious diseases is like substituent of certain antibiotics or like complementary agents used in

Table 2: Antimicrobial activity of commercial antibiotics determined by the agar diffusion method

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>AMP (5µl/disc)</th>
<th>AMX (10 µl/disc)</th>
<th>CLR (30 µl/disc)</th>
<th>GMC (10 µl/disc)</th>
<th>AMK (10 µl/disc)</th>
<th>CEF (10 µl/dil)</th>
<th>CFX (5 µl/disc)</th>
<th>CFT (30 µl/disc)</th>
<th>OFX (5 µl/disc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>NI</td>
<td>20.4±2.3</td>
<td>13.6±0.8</td>
<td>13.8±0.6</td>
<td>8.2±1.4</td>
<td>14.7±1.3</td>
<td>14±1.5</td>
<td>25.2±3.4</td>
<td></td>
</tr>
<tr>
<td>S. aureus</td>
<td>NI</td>
<td>17.5±1.2</td>
<td>17.2±2.2</td>
<td>14.5±0.5</td>
<td>7.4±0.6</td>
<td>14.2±0.8</td>
<td>14.2±1.2</td>
<td>21±2.5</td>
<td></td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>NI</td>
<td>21±2.2</td>
<td>14.4±1.4</td>
<td>13.2±12</td>
<td>NI</td>
<td>15.5±0.7</td>
<td>14.5±1.5</td>
<td>21.6±2.2</td>
<td></td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>8.5±1.5</td>
<td>14.5±1.5</td>
<td>13.4±0.8</td>
<td>12.4±1.6</td>
<td>NI</td>
<td>14±1.5</td>
<td>18±1.4</td>
<td>25.4±3.2</td>
<td></td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>8±1.5</td>
<td>14.4±2.2</td>
<td>13±1.4</td>
<td>13.4±1.2</td>
<td>8.5±1.3</td>
<td>13.5±1.4</td>
<td>13.2±1.2</td>
<td>14.5±1.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Antimicrobial activities of L. stoechas essential oil using macro-dilution method.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>MIC (µl/mL)</th>
<th>MBC (µl/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>S. aureus</td>
<td>2.5</td>
<td>5</td>
</tr>
<tr>
<td>K. pneumonia</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>P. mirabilis</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>P. aeruginosa</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>
synergy with the synthesis substances. Further advance research on toxicological and clinical studies are required to prove the safety of the oil.

REFERENCES

12. Daddalioglu I, Evrendilek GA. Chemical compositions and antibacterial effects of essential oils of Turkish orogeno (Origanum minutiflorum), bay laurel (Laurus nobilis), spanish lavender (Lavandula stoechas), and fennel (Foeniculum vulgare) on common foodborne pathogens. J Agri Food Chem 2004; 52: 8255-8260.

