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ABSTRACT 

Chemical investigation of the dichloromethane extract of Flacourtia rukam Zoli. & Moritzi (Syn.  Flacourtia euphlebia 

Merr.) led to the isolation of monogalactosyl diacylglycerols (1), β-sitosteryl-3β-glucopyranoside-6β-O-fatty acid esters 

(2), β-sitosterol (3) and triacylglycerols (4) from the pulp; 3 and chlrorophyll a (5) from the fruit peel; and 4 from the seeds. 

The structures of 1-5 were identified by comparison of their NMR data with literature data. 
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INTRODUCTION 

Flacourtia rukam Zoll. and Mor. (Syn.  Flacourtia 

euphlebia Merr.)1, locally known as bitongol, is found in 

forest at low and medium altitude. The fruit of the 

cultivated F. rukam is edible and is used for making pies 

and jams, while the wild tree has sour fruit. The wood is 

used in the rural areas for house construction2.  The juice 

of the leaves is applied to inflamed eye-lids. The immature 

fruit is employed as medicine against diarrhoea and 

dysentery. A decoction of the roots is taken by women after 

childbirth1. 

We report herein the isolation of monogalactosyl 

diacylglycerols (1), β-sitosteryl-3β-glucopyranoside-6β-

O-fatty acid esters (2), β-sitosterol (3), triacylglycerols (4), 

and chlorophyll a (5) from F. rukam.  The chemical 

structures of 1-5 are presented in Fig. 1. To the best of our 

knowledge this is the first report on the isolation of 1-5 

from F. rukam.    

 

MATERIALS AND METHODS 

General Experimental Procedure 
1H (500 MHz) and 13C (125 MHz) NMR spectra were 

acquired in CDCl3 on a 500 MHz Agilent DD2 NMR 

spectrometer with referencing to solvent signals (δ 7.26 

and 77.0 ppm). Column chromatography was performed 

with silica gel 60 (70-230 mesh). Thin layer 

chromatography was performed with plastic backed plates 

coated with silica gel F254 and the plates were visualized 

by spraying with vanillin/H2SO4 solution followed by 

warming. 

Sample Collection 

The sample was collected from the Salikneta farm, San 

Jose Del Monte, Philippines in 2015.  It was authenticated 

as Flacourtia rukam Zoli. & Moritzi at the Botany 

Division of the Philippine National Herbarium, National 

Museum, Philippines. 

General Isolation Procedure 

The crude extract was fractionated by silica gel 

chromatography using increasing proportions of EtOAc in 

petroleum ether as eluents. All fractions were monitored 

by thin layer chromatography. Fractions with spots of the 

same Rf values were combined and rechromatographed in 

appropriate solvent systems until TLC pure isolates were 

obtained.  

Isolation of the chemical constituents of the Pulp of F. 

rukam 

The freeze-dried pulp of F. rukam (77.7 g) were ground in 

a blender, soaked in CH2Cl2 for 3 days and then filtered. 

The solvent was evaporated under vacuum to afford a 

crude extract (0.55 g) which was chromatographed using 

increasing proportions of acetone in CH2Cl2 at 10% 

increment by volume.  The acetone fraction was 

rechromatographed (2 ×) using 7.5% EtOAc in petroleum 

ether to afford 4 (7 mg). The 20% acetone in CH2Cl2 

fraction was rechromatographed (3 ×) using 10% EtOAc 

in petroleum ether to yield 3 (2 mg) after washing with 

petroleum ether. The 30% to 50% acetone in CH2Cl2 

fractions were combined and rechromatographed (3 ×) 

using 15% EtOAc in petroleum ether to afford 2 (3 mg) 

after washing with petroleum ether. The 70% to 80% 

acetone in CH2Cl2 fractions were combined and 

rechromatographed (2 ×) using CH3CN:Et2O:CH2Cl2 

(2:2:6, v/v) to yield 1 (3 mg) after trituration with 

petroleum ether. 

Isolation of the chemical constituents of the Peel of F. 

rukam 
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The freeze-dried peel of F. rukam (47.7g) were ground in 

a blender, soaked in CH2Cl2 for 3 days and then filtered.  

The solvent was evaporated under vacuum to afford a 

crude extract (0.17 g) which was chromatographed using 

increasing proportions of acetone in CH2Cl2 at 10% 

increment by volume.  The 20% acetone in CH2Cl2 fraction 

was rechromatographed using 10% EtOAc in petroleum 

ether.  The less polar fractions were combined and 

rechromatographed using 15% EtOAc in petroleum ether 

to yield 3 (4 mg) after washing with petroleum ether.  The 

more polar fractions were combined and 

rechromatographed (2 ×) using 15% EtOAc in petroleum 

ether to yield 5 (7 mg) after washing with petroleum ether, 

followed by Et2O.   

Isolation of the chemical constituents of the Seeds of F. 

rukam 

The freeze-dried seeds of F. rukam (57.7 g) were ground 

in a blender, soaked in CH2Cl2 for 3 days and then filtered. 

The solvent was evaporated under vacuum to afford a 

crude extract (3.96 g) which was chromatographed using 

increasing proportions of acetone in CH2Cl2 at 10% 

increment by volume.  The CH2Cl2 fraction was 

rechromatographed using 5% EtOAc in petroleum ether to 

yield 4 (12 mg). 

 

RESULTS AND DISCUSSION 

Silica gel chromatography of the dichloromethane extracts 

of the different parts of F. rukam yielded 1–5. The NMR 

spectra of 1 are in accordance with data reported in the 

 
Figure 1: Chemical structures of monogalactosyl diacylglycerols (1), β-sitosteryl-3β-glucopyranoside-6β-O-fatty acid 

esters (2), β-sitosterol (3), triacylglycerols (4) and chlorophyll a (5) from F. rukam. 
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literature for monogalactosyl diacylglycerols3; 2 for β-

sitosteryl-3β-glucopyranoside-6'̾-O-fatty acid esters4; 3 for 

β-sitosterol5; 4 for triacylglycerols5; and 5 for chlorophyll 

a6. Literature search revealed that the compounds (1-5) 

isolated from F. rukam exhibited diverse biological 

activities. Monogalactosyl diacylglycerols (1) and 

dinogalactosyl diacylglycerols are the most widespread 

non-phosphorous polar lipids in nature, constituting about 

80% of membrane lipids in plants and more than half of all 

lipids in algae7,8. These compounds were reported to 

exhibit a number of biological properties, such as anti-

tumor9,10, anti-viral11, algicidal12 and anti-inflammatory13-

16. Monogalactosyl diacylglycerols were also found to 

show cytotoxic and anti-inflammatory activity in RAW 

264.7 macrophage cells with IC50 values of 60.06 and 

65.70 μg/mL, respectively17. Compound 1 was also 

reported to exhibit anti-inflammatory activity in human 

articular cartilage14. It inhibited the growth of human 

melanoma cells in a dose-dependent manner with an IC50 

value of 114 μM18. 

β-Sitosteryl-3α-glucopyranoside-6'-O-palmitate (2) was 

reported to exhibit cytotoxicity against Bowes (melanoma) 

and MCF7 (breast) cancer cell lines with IC50 values of 152 

μM and 113 μM, respectively19. Furthermore, 1 exhibited 

cytotoxicity against human stomach adenocarcinoma 

(AGS) cell line with 60.28% growth inhibition20. 

Compound 1 was found to exhibit potent anti-complement 

activity (IC50 = 1.0 ± 0.1 μM) as compared to the positive 

control, tiliroside (IC50 = 76.5 ± 1.1 μM)21. 

β-Sitosterol (3) was observed to have growth inhibitory 

effects on human breast MCF-7 and MDA-MB-231 

adenocarcinoma cells22. It was shown to be effective for 

the treatment of benign prostatic hyperplasia23. It was also 

reported to attenuate β-catenin and PCNA expression, as 

well as quench the radical in-vitro, making it a potential 

anticancer drug for colon carcinogenesis24. It can inhibit 

the expression of NPC1L1 in the enterocytes to reduce 

intestinal cholesterol uptake25.  It has also been reported to 

induce apoptosis mediated by the activation of ERK and 

the downregulation of Akt in MCA-102 murine 

fibrosarcoma cells26. 

Triacylglycerols (2) was reported to significantly inhibit 

the tumor growth in the spleen of mice with 

intrasplenically implanted Lewis lung carcinoma27. 

Triacylglycerols exhibited antimicrobial activity against S. 

aureus, P. aeruginosa, B. subtilis, C. albicans, and T. 

mentagrophytes28. Another study reported that 

triacylglycerols showed a direct relationship between 

toxicity and increasing unsaturation, which in turn 

correlated with increasing susceptibility to oxidation29. 

Chlorophyll (5) and its various derivatives are used in 

traditional medicine and for therapeutic purposes30.  

Natural chlorophyll and its derivatives have been studied 

for wound healing31, anti-inflammatory properties32, 

control of calcium oxalate crystals33, utilization as 

effective agents in photodynamic cancer therapy34-36, and 

chemopreventive effects in humans37,38. A review on 

digestion, absorption and cancer preventive activity of 

dietary chlorophyll has been provided39. 
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