Research Article

Pharmacognostical Studies on Ficus elastica Roxb. Root

Vivek Kumar Gupta¹, Surendra Kumar Sharma²*

¹Dept. of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar1 – 125 001
²M.M. College of Pharmacy, M.M. University, Mullana (Ambala), Haryana

ABSTRACT

Ficus elastica Roxb. or Rubber Plant is a very common and famous species of Genus Ficus. Literature survey has revealed little information on the plant in every aspect. So, an attempt has been made to study the pharmacognostical properties of this plant.

Keywords:

INTRODUCTION

Ficus elastica Roxb. is a large, handsome, evergreen and most important indigenous rubber tree of India, occurs in the outer Himalayas from Nepal eastwards to Assam and Khasi Hills, propagated either by seeds or by cuttings and layers¹. The plant contains a flavonoid, which exhibits anti-inflammatory activity comparable to indomethacin. A coumarin ‘Bergapten’, a terpenoid ‘α-Amyrin’ were isolated from the latex and polyprenols are reported from the leaf². Ethanolic extract of aerial parts exhibited diuretic properties³.

MATERIALS AND METHODS

The roots of plant were collected from Patti, Tarantaran, Punjab in July 2005. It was authenticated by Professor P. Jayaraman, Scientist, PARC, Medicinal Plant Research Unit, Chennai. A voucher specimen (No. VFE/10) has been retained in the Pharmacognosy Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar (India) for future reference.

Table – 1: Ash Values and Extractive Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result (% w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ash Values</td>
<td></td>
</tr>
<tr>
<td>Total ash</td>
<td>16.46</td>
</tr>
<tr>
<td>Acid insoluble ash</td>
<td>10.0</td>
</tr>
<tr>
<td>Water soluble ash</td>
<td>2.33</td>
</tr>
<tr>
<td>Sulphated ash</td>
<td>14.94</td>
</tr>
<tr>
<td>Extractive Values</td>
<td></td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>2.51</td>
</tr>
<tr>
<td>Chloroform</td>
<td>2.71</td>
</tr>
<tr>
<td>Benzene</td>
<td>2.2</td>
</tr>
<tr>
<td>Alcohol soluble</td>
<td>3.0</td>
</tr>
<tr>
<td>Water soluble</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Pharmacognostical Studies⁶

In Pharmacognostical studies⁶ the morphological studies were performed to determine the color, shape, size, odour, taste, fracture etc. of the plant specimen. In microscopy⁵, anatomy (T.S.) and powder characteristics of the root were studied. One of the plant specimen was selected, different organs were cut and removed from the plant and fixed in a mixture FAA including Formalin (5ml), Acetic acid (5 ml) and 70% Ethyl alcohol (90ml). Photographs of different magnifications were taken with Nikon Labphot 2 microscopic unit. Bright field was used for normal observation and polarized light was employed for the study of crystals, starch grains and lignified cells. Ash values and solvent extractive values were determined in accordance with Khandelwal¹⁰ and Indian Pharmacopoeia¹¹.

Corresponding Author: prof.sharmask@gmail.com

Figure 1. T.S. of Ficus elastica Roxb. root

[Pe – Periderm, Co – Cortex, SPh – Secondary Phloem, GF – Gelatinous fibres, Ve – vessels, PX – Primary xylem, SX – Secondary xylem]
RESULTS AND DISCUSSION
Anatomy of the root with diameter (2 mm) revealed a broad, irregularly fissured periderm (250 µm in width), fairly broad cortex (Fig. 1). The periderm had outer broken phellem cells, middle thick walled, phelloid cells and inner intact cells. The cortex consisted of small, thin walled compact parenchyma cells. The cortical zone was nearly 300 µm wide. Secondary phloem consisted scattered gelatinous fibres, ray cells and sieve elements and secondary xylem consisted sparsely distributed, angular, thin walled, solitary or radial multiples of vessels. The ground tissue of the xylem consisted of thin walled, lignified fibres as well as gelatinous fibres.

In powder microscopy, narrow, cylindrical, vessel elements (200-400µm in length), libriform (1.7 mm long) and wide (1.2 mm long) fibres, small masses of thin walled polygonal periderm cells and bundles of xylem parenchyma cells were also seen (Fig. 2.). Controlled incineration of crude drugs results in an ash residue consisting of an inorganic material (metallic salts and silica). This value varies within fairly wide limit and is therefore an important parameter for the purpose of evaluation of crude drugs. Extractive values determine the estimation of specific constituents, soluble in that particular solvent used for extraction. Ash values and extractive values are reported in Table 1.

REFERENCES