In-vitro Efficacy of Various Fruit Extracts of Duranta erecta and Piper longum Against Adult Amphistomes

Krishnaprasad G K1*, Surya S1, Sujith S1, Preethy J1, Priya M N2, Devi S S3, Usha P T A1

1Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India – 680651.
2Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India – 680651.
3Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Mannuthy, Thrissur, Kerala, India – 680651.

Received: 16th Oct, 17; Revised 7th Nov, 17, Accepted: 27th Mar, 18; Available Online: 25th Apr, 18

ABSTRACT
Gastrointestinal infections among livestock are gaining much importance not merely due to its occurrence, but also due to widespread anthelmintic resistance. Phytochemicals are ideal alternatives to combat the infection and resistance. The present study was aimed to assess the in vitro adulticidal activity of methanolic extract and its n-hexane, chloroform, n-butanol and aqueous fractions from fruits of Duranta erecta and Piper longum against adult amphistomes. Fresh fruits were collected, identified, shade dried, pulverised and extracted with methanol and the extracts were successively fractionated. The qualitative phytochemical analysis was done to detect phytoconstituents. The extracts and fractions were obtained by soxhlet extraction apparatus, dried in a rotary vacuum evaporator and stored at 4ºC. The extracts were further fractionated using n-hexane, chloroform, n-butanol and aqueous fractions from fruits of Duranta erecta and Piper longum. The phytochemical analysis revealed the presence of flavonoids in all the extracts and fractions while tannins, glycosides and diterpenes were absent in hexane fraction of D. erecta. Saponins were absent in P. longum extract and fractions. Amphistomes were highly sensitive for chloroform fraction of D. erecta and methanolic extract of P. longum with IC50 of 1.354 mg/mL and 5.493 mg/mL respectively while all other extract/fractions exhibited moderate anthelmintic activity. The histopathology revealed morphological changes in tegument, syncytium and parenchyma. From the present study it could be concluded that fruits of both plants possessed activity against amphistomes and further isolation of the active compounds from potent extract/fraction can provide a base for the development of a novel, safe anthelmintic which may have a novel mechanism of action.

Keywords: Adulticidal activity, Duranta erecta, Histopathology, Piper longum, Thiabendazole.

INTRODUCTION
Gastrointestinal nematode infections are one of the major constraint in profitable livestock farming. These infections not only affect animal health, but also indirectly affect global and national economic development1. Control of these helminth infections is mainly achieved by the use of synthetic anthelmintic drugs. Unfortunately, due to indiscriminate usage, resistance to the drugs is emerging2. In this scenario, phytotherapy has gained much importance as an alternative to treat helminthic infections and to combat resistance. These herbal remedies are cheaper, reliable and less toxic as compared to the synthetic chemicals3. Hence in the present study, the methanolic extract and its fractions from fruits of Duranta erecta and Piper longum were evaluated for their effect on the adult amphistomes.

MATERIALS AND METHODS

Plant Materials

The fruits of Duranta erecta collected from premises of Veterinary College, Mannuthy while Piper longum procured from local vendors in Thrissur, were identified and authenticated by a Botanist at St. Thomas College Thrissur and were dried under shade and pulverized. Thimbles were made and extracted using methanol in soxhlet extraction apparatus, dried in a rotary vacuum evaporator and stored at 4ºC. The extracts were further fractionated using n-hexane, chloroform, n-butanol and water. All the extracts were stored under refrigeration after drying.

Phytochemical Analysis
The qualitative phytochemical analysis was done for all extract and fractions4.

Assessment of Amphistomicidal activity
Collection of Amphistomes

*Author for Correspondence: kpvet.kgvk@gmail.com
Table 1: Qualitative phytochemical analysis of extracts and fractions of *Duranta erecta* and *Piper longum*.

<table>
<thead>
<tr>
<th>Phyto-constituents</th>
<th>Methanolic D. erecta</th>
<th>n-Hexane Fraction</th>
<th>Chloroform Fraction</th>
<th>n-Butanol Fraction</th>
<th>Aqueous Fraction</th>
<th>Methanolic P. longum</th>
<th>n-Hexane Fraction</th>
<th>Chloroform Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steroids</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tannins</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cardiac Glycosides</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phenolic compounds</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Diterpenes</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Triterpenes</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Saponins</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2: Minimum concentration and time producing 50 per cent and 100 per cent mortality of amphistomes, (mg/mL and minutes).

<table>
<thead>
<tr>
<th>Extract/ Fraction</th>
<th>Concentration (mg/mL)</th>
<th>Time (minutes)</th>
<th>Concentration (mg/mL)</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanolic D. erecta</td>
<td>7.81</td>
<td>115</td>
<td>31.25</td>
<td>105</td>
</tr>
<tr>
<td>n-hexane D. erecta</td>
<td>31.25</td>
<td>95</td>
<td>62.5</td>
<td>95</td>
</tr>
<tr>
<td>Chloroform D. erecta</td>
<td>3.91</td>
<td>55</td>
<td>1.95</td>
<td>65</td>
</tr>
<tr>
<td>n-butanol D. erecta</td>
<td>3.91</td>
<td>115</td>
<td>7.81</td>
<td>120</td>
</tr>
<tr>
<td>Aqueous D. erecta</td>
<td>1.95</td>
<td>120</td>
<td>7.81</td>
<td>105</td>
</tr>
<tr>
<td>Methanolic P. longum</td>
<td>1.95</td>
<td>105</td>
<td>7.81</td>
<td>85</td>
</tr>
<tr>
<td>n-hexane P. longum</td>
<td>15.63</td>
<td>115</td>
<td>31.25</td>
<td>120</td>
</tr>
<tr>
<td>Chloroform P. longum</td>
<td>7.81</td>
<td>105</td>
<td>15.63</td>
<td>110</td>
</tr>
<tr>
<td>Thiabendazole Control</td>
<td>10 µg/mL</td>
<td>30</td>
<td>10 µg/mL</td>
<td>45</td>
</tr>
<tr>
<td>Tyrodes Control</td>
<td>-</td>
<td>120</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td>Tween 80 Control</td>
<td>-</td>
<td>120</td>
<td>-</td>
<td>150</td>
</tr>
</tbody>
</table>

Figure 1: Inhibitory concentration-50 based on Adulticidal Assay (mg/mL.)
Fresh amphistomes were recovered manually from the rumen of slaughtered cattle and transferred into tyrodes solution. Care was taken during the collection of the amphistomes to have the sucker intact. The amphistomes were washed in tyrodes solution and transferred to petriplates containing extracts.

Test drug preparation
Extracts were diluted in tyrodes solution at 500, 250, 125, 62.5, 31.3, 15.63, 7.8, 3.91 and 1.95 mg/mL concentrations in petriplates to get a total volume of 20 ml. Tyrodes solution served as negative control while thiabendazole at 10 µg/mL acted as positive control\(^5\).

Test procedure

Amphistomicidal activity was done as per 12 with minor modifications. Six amphistomes were placed in the extract containing petriplates and their motility/ wriggling movements were noted every fifteen minutes. Cessation of movements even on stimulation were considered as the end point of observation. The experiments were done in triplicates and the average value was taken. The time and concentration at which 50 and 100 per mortality observed were noted\(^6\).

Histopathology

The dead amphistomes were fixed in Bouins solution for 12 hours initially and then followed by two changes of 10% formalin for routine haematoxylin and eosin staining procedure. The tissues were made into sections, stained and examined under microscope for finding out the morphological alterations\(^5\).

RESULTS

Phytochemical Analysis

Effect of various extracts on adult amphistomes

The lowest concentration and the time taken by methanolic extract and its fractions from fruits of *D. erecta* and *P. longum* to induce 50 and 100 per cent mortality are given in Table no. 2.

The chloroform fraction of *D. erecta* was highly effective to produced 50 and 100 per cent mortality at 55\(_th\) and 65\(_th\) minutes respectively even at lowest concentrations. The methanolic extract of *P. longum* was effective to produce complete mortality of adult amphistomes at 85\(_th\) minute at 7.81 mg/mL.

Inhibitory concentration-50 (IC\(_{50}\))

The IC\(_{50}\) value obtained for all the extracts and fractions at 60 minutes of study is represented in Table no. 3 and Figure 4. The IC\(_{50}\) data obtained in the study suggested that the chloroform fraction of methanolic extract of *D. erecta* was highly potent (IC\(_{50}\) = 1.354 mg/mL) followed by methanolic extract of *P. longum* fruit (IC\(_{50}\) = 5.493). The n-hexane fraction of *D. erecta* was least effective among all extracts and fractions assayed in the study (IC\(_{50}\) = 151.1 mg/mL).

Histopathology of extract/fraction exposed amphistomes

The longitudinal sections of treated amphistomes revealed mild to severe morphological alterations in tegument, syncytium and parenchyma (Plates 1 & 2). The potent adulticidal chloroform fraction of *D. erecta* (IC\(_{50}\)= 1.354 mg/mL) affected all the layers except outer tegument with complete degeneration of sub-syncytial zone including circular and longitudinal muscles and severe vacuolisation in parenchymal area was observed (Plate No. 1, A). The methanolic extract of *Piper longum* (IC\(_{50}\)= 5.493 mg/mL) caused thinning of tegumental layers and severe vacuolisation in parenchymal area and mild degeneration of muscular layer (Plate No. 1, B). Detachment of syncytial layers from sub-syncytium with bleb formation was induced by the chloroform fraction of *P. longum* (Plate No. 2, A) and aqueous fraction of *D. erecta* with mild loss of muscular integrity.

Histopathology of thiabendazole exposed flukes showed thinning of all layers with mild vacuolisation of the parenchyma (Plate No. 2, B). No morphological changes were observed in negative control (tyrodes solution)

DISCUSSION

Gastrointestinal nematode infections are common among ruminants and are mainly controlled by synthetic anthelmintic drugs. Occurrence of resistance against these chemical agents has made gastrointestinal nematodiosis a major threat to profitable livestock farming\(^6\). Anthelmintic activity of various plant extracts against ova and larvae has been reported earlier\(^7-10\). Hence the present study aimed at adulticidal activity of various extracts and fractions of fruits of *D. erecta* and *P. longum* against amphistomes.

The qualitative phytochemical analysis showed varied distribution of steroids, alkaloids, tannins, glycosides, phenolics, terpenes. Saponins were absent in extract and fractions of *P. longum*. All the extracts and fractions assayed in the study were effective against amphistomes. The chloroform fraction of *D. erecta* and methanolic extract of *P. longum* possessed potent adulticidal activity with IC\(_{50}\) of 1.354 and 5.493 mg/mL respectively. The histopathology of potent extract exposed amphistomes revealed mild to severe morphological changes in tegument, syncytium and parenchyma.

The adulticidal activity of extracts and fractions can be attributed to the presence of phytochemicals which effects the vital functions of the helminth viz. neuromuscular transmission, damage to cuticle leading to osmotic imbalance and ion exchange etc\(^11-12\). The polyphenolic tannins bind to the proline rich glycoprotein in the cuticle and uncouple the oxidative phosphorylation leading to death of the helmhnt due to lack of energy generation\(^13-14\). Terpenes and saponins interact with the collagen of cuticle and damage it leading to electrolyte imbalances\(^14-15\). The phytochemicals penetrate through these damaged surfaces and effect the muscular layers in parenchyma leading to the loss of motility and ultimately cause death of the helminth. The observations of histopathology showed morphological alterations in various layers of the helminth which was similar to those reported in earlier studies\(^6-7\).

Thus, from the present study it can be concluded that the chloroform fraction of fruits of *D. erecta* and methanolic extract of *P. longum* fruits possess potent adulticidal activity and can be considered for further research to develop them as promising plant derived chemical to control helmimptic infections and to combating the resistance.

ACKNOWLEDGEMENT

The authors acknowledge Kerala Veterinary & Animal Sciences University and Kerala State Council for Science, Technology & Environment for funding this research.

REFERENCES

