Phytochemical Investigation and Validation of Antioxidant Potential of β-Sitosterol from Tubers of *Eulophia herbacea* and *Eulophia ochreata*

Patil Manisha¹*, Patil Chandrashekharkr², Mahajan Raghunath³

¹Department of Zoology, Dr. A. G. D. Bendale Mahila Mahavidyalaya, Jalgaon-425 001
²Department of Chemistry, Smt. G. G. Khadse College, Muktainagar-425 306.
³Post graduate College of Science, Technology and Research, Mooljee Jaitha College Campus, Jalgaon-425 001.

Available Online: 25th September, 2018

ABSTRACT

Many species of the genus *Eulophia* from family Orchidaceae are used as excellent health-promoting agent, in traditional medicine to treat diarrhoea, stomach pain, rheumatoid arthritis, cancer, asthma, bronchitis, gynaecological problems, paralysis, cough, anæmia, piles, impotency, tuberculosis, epilepsy, blood purification. Phytochemical investigation has been carried out qualitatively as well as quantitatively on tuber powder and extracts of *Eulophia herbacea* and *Eulophia ochreata* prepared in different solvents. The order of % of extracts obtained in different solvents is water > methanol > benzene > chloroform > petroleum ether for *E. herbacea* as well as *E. ochreata*. Secondary metabolites like phytosterol, mucilage, phenol, proanthocyanidine and flavonoid have been detected in both the test plant extracts. β-sitosterol has been isolated and purified from methanolic extract of both the plants using TLC, HPLC and spectroscopically, however β-sitosterol is more in *E. ochreata* than *E. herbacea*. Both the *Eulophia* species have been found to possess significant radical scavenging activity against 1, 1-diphenyl-2-picrylhydrazyl (DPPH). IC₅₀ value of *E. herbacea* and *E. ochreata* was found to be 51.04 µg/ml and 50.13µg/ml respectively. Further validation of antioxidant potential of β-sitosterol confirmed its in vitro antioxidant property through DPPH free radical scavenging and reducing power properties. The medicinal property of *Eulophia* may be attributed due to the presence of phenol, flavonoids and β-sitosterol with profound antioxidant potential. The therapeutic effect of this plant may be accounted for its counteracting action on free radicals in vivo.

Keywords: secondary metabolites, β-sitosterol, antioxidant, DPPH, *Eulophia* species.

INTRODUCTION

Orchids such as *Eulophia* from the family Orchidaceae have attracted the worldwide researchers towards their ethnomedicinal potential. Phytochemical analysis of plant is very important commercially and has great interest in pharmaceutical industries for the production of the new drug for curing of various diseases. Tribal people of India routinely consume tubers of *Eulophia* as food and use therapeutically for better health and longevity. The tubers of *Eulophia* species are used for its rejuvenating, aphrodisiac and antirheumatic properties. The various biological activities of *Eulophia* tubers reported are: anabolic, anthelmintic, antidiarrheal; antimicrobial, anti-inflammatory, antioxidant, antitumor, hypolipidemic and fertility. Very recently, spermatogenic parameters have been reported in herbal composition containing *Macuna pruriens* (Linn), *Chlorophytum borivilianum* (Sant and Fernand) and *Eulophia campstris* (Wall) and authors proved aphrodisiac nature of these plants experimentally. Amongst large number of activities the fertility and aphrodisiac activity contribute 47 % and 35% respectively.

In Ayurvedic medicine, *Eulophia* is prescribed for the treatment of impotency, gynaecological problems, decreased sperm count and blood purification. The phytochemical analysis of *E. campestris*, *E. epidendraea*, *E. herbacea*, *E. ochreata*, *E. nuda* are reported qualitatively along with proximate and mineral composition of *E. ochreata*. The present study includes i) Physico-chemical analysis of tuber powder of *E. herbacea* and *E. ochreata* in chemical nature of extractives. ii) Phytochemical analysis of methanolic extracts of *E. herbacea* and *E. ochreata* for the detection of secondary metabolites qualitatively as well as quantitatively. iii) Chromatographic analysis of crude drug extracts. iv) Validation of β-sitosterol for antioxidant properties and other bioactivities.

MATERIAL AND METHOD

Extraction Preparation:

The tubers of *E. herbacea* and *E. ochreata* were collected from Nasik and Jalgaon district respectively. Identified and shade dried tubers were extracted with solvents: petroleum ether, benzene, chloroform, methanol and water successively in a Soxhlet extractor. All the extracts were analyzed phytochemically and proceed for isolation.

*Author for Correspondence:
of active ingredients.

Eulophia herbacea

Common name: Herbaceous Eulophia; English: Salep (var.); Ayurvedic: Munjaataka (substitute), Saalam-misri (substitute); Marathi: कुकुडकंद kukudkand, Kukad-kand, Kutri-kand or umarkand; Hindi: Bilarikand, Vansingara

Eulophia ochreata

Common name: Golden-Yellow Eulophia; Marathi: अमरकंद amarkand, अमरकांदा amarkanda, Singadya-kand; Rajasthani: Gorakhamundi, Salam-mishri; English - Wild coco Golden-Yellow Eulophia.

Physico-chemical analysis of Tuber powder of Eulophia species

The crude drugs were tested for the following tests as per the USP and IHP. The results were reported in % Mean ± SD. Total ash content, acid insoluble ash, water soluble ash and sulphated ash, extract percentage, loss on drying was determined by methods of AOAC. Qualitative screening was done as shown in Table-1 using the procedures of Harborne.

Detection of β-sitosterol in E. herbacea and E. ochrera on the basis of analytical (TLC) and spectral analysis (UV, HPLC)

The earlier results on various medicinal plants and allied activities of methanolic extracts (from five solvent extracts potentially isolated) inspired us to study the detection of β-sitosterol in methanolic extract of *E. herbacea* (MEEH) and methanolic extract of *E. ochrera* (MEO) by applying various analytical and spectroscopic techniques namely: UV-Vis, TLC, HPLC.

Spectral analysis-UV-Vis spectrum

The dried extract dissolved in methanol (1mg/ml) and the UV-Vis spectrum was recorded.

Analytical Characterization-1. TLC

Thin layer chromatographic studies of MEEH and MEO were carried out. A phytochemical standard sterol (beta-sitosterol) and phenols (gallic acid and tannic acid) were used for identification. The glass plates coated with silica gel (Loba), slightly warmed in hot air oven and used for TLC. Using a capillary, solution of standard and extracts were loaded gradually over the plate by concentrating the spot. The 10 ml mobile phase as required was added in the glass jar. The jars were allowed 30 min. for saturation with mobile phase. The TLC development was carried out for 20 min. and then the dried plate was exposed to the corresponding spraying agents (Iodine for 4a; Ciocalteu for 4b and 4c). The plate is viewed under normal light in TLC cabinet and Rf values were

![Photoplate showing a) flower(white) and b) tubers *Eulophia herbacea*.](image1)

![Photoplate showing a) flowers(golden yellow) and b) tubers of *E. ochrera*.](image2)
calculated.

HPLC (High performance Liquid Chromatography)
HPLC technique is simple, perfect and powerful separation method available for analyst. With the help of this technique we have analyzed different phyto-constituents from test plant extracts.

The above chromatographic conditions were established by trial and error and were kept constant throughout the experimentation. According to reverse phase method HPLC was carried out.

In vitro antioxidant activity of β-sitosterol from MEEH and MEEO

Evaluation of free radical scavenging property
The free radical scavenging capacity of extracts was determined using DPPH method. Freshly prepared DPPH solution (0.004 % w/v) was taken in test tubes and test samples of concentration ranging from 20-100 μg were added. After 10 min, the absorbance is measured at 517 nm. A blank was prepared without extract. The radical scavenging activity of Ascorbic acid (Vitamin C) was used as standard for validation of antioxidant property of β-sitosterol isolated from both plants. The capability to scavenge the DPPH radical was calculated using the following equation:

DPPH Scavenged (%) = [(Acontrol – Atest)/ Acontrol] x 100

where, \(A_{control} \) is the absorbance of the control reaction and \(A_{test} \) is the absorbance in the presence of the sample of the extracts.

Evaluation of Reducing Power Assay
The reducing power was determined by the method of Oyaizu41. Various concentrations of β-sitosterol from the plant extracts in 1.0 ml of deionized water were mixed with phosphate buffer (2.5 ml) and potassium ferricyanide (2.5 ml) and incubated at 50°C for 20 minutes. Aliquot of TCA (2.5 ml) was added to the mixture, which then centrifuged at 3000 rpm for 10 min whenever necessary. The upper layer of solution (2.5 ml) was mixed with DW (2.5 ml) and a freshly prepared ferric chloride solution (0.5 ml). The absorbance was measured at 700 nm using blank. Ascobic acid was used as standard.

% increase in Reducing Power = [1- (Atest /Ablank) x 100] ….

Where, \(A_{test} \) is absorbance of test solution; \(A_{blank} \) is absorbance of blank. In this assay the yellow test solution changed to various shades of green and blue depending upon the reducing power of each compound. The presence of radicals (i.e. antioxidant) caused the conversion of the Fe^3+/ ferricyanide complex used in this method to the ferrous form. Therefore, by measuring the...
formation of pearls Prussian blue at 700 nm, the Fe\(^{3+}\) concentration was monitored; a higher absorbance at 700 nm indicated a higher reducing power.

RESULTS

Physico-chemical analysis of Tuber powder
The ash content, moisture content and foreign organic matters in % w/w; solvent extract in % of the *Eulophia* tuber powder is given in Table 2.

Qualitative and quantitative screening of metabolites
Primary and secondary metabolites in different solvent extracts of *E. herbacea* and *E. ochreata* are detected qualitatively and quantitatively (Table 3 and 4).

The quantitative estimation of primary metabolites reveals various chemical constituents present in the test plants (Table 4). Carbohydrate content was found high (28.54 and 29.13% respectively) followed by protein (17.39 and 17.07% respectively) and lipid contents found very low i.e., 00.95 and 00.99%.

Table 2: Metabolite and Test

<table>
<thead>
<tr>
<th>No</th>
<th>Metabolite</th>
<th>Test</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crude lipid content</td>
<td>AACC</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>Total Flavonoid</td>
<td>Aluminium chloride method</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>Proanthocyanidin(condensed tannin)</td>
<td>vanillin-HCl assay</td>
<td>28</td>
</tr>
<tr>
<td>4</td>
<td>Proteins</td>
<td>Lowry’s method</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>Carbohydrates</td>
<td>Anthrone method</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Mucilage</td>
<td>Convention method</td>
<td>31,32</td>
</tr>
<tr>
<td>7</td>
<td>Total phenol</td>
<td>Folin-Ciocalte reagent</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Saponin.</td>
<td>Foam test</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>Swelling Index</td>
<td>BP method</td>
<td>35,36</td>
</tr>
<tr>
<td>10</td>
<td>Crude fibers</td>
<td>Nitric acid method</td>
<td>37</td>
</tr>
</tbody>
</table>

Table 3: Parameters

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Parameter</th>
<th>Particulars/Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HPLC Machine</td>
<td>Younglin (S.K), Gradient System, UV Detector</td>
</tr>
<tr>
<td>2</td>
<td>Software</td>
<td>Autochro -3000</td>
</tr>
<tr>
<td>3</td>
<td>Column</td>
<td>4.6 x 250 mm</td>
</tr>
<tr>
<td>4</td>
<td>Particle size packing</td>
<td>5 μm</td>
</tr>
<tr>
<td>5</td>
<td>Stationary phase</td>
<td>C18 (GRACE)</td>
</tr>
<tr>
<td>6</td>
<td>Mobile Phase</td>
<td>90:10 (0.05%) Acetonitrile : Water (OPA)</td>
</tr>
<tr>
<td>7</td>
<td>Detection Wavelength</td>
<td>254 nm</td>
</tr>
<tr>
<td>8</td>
<td>Flow rate</td>
<td>0.6 ml/min</td>
</tr>
<tr>
<td>9</td>
<td>Temperature</td>
<td>Ambient</td>
</tr>
<tr>
<td>10</td>
<td>Sample size</td>
<td>20 μl</td>
</tr>
</tbody>
</table>

The absorption spectra studied in the range 600-260 nm shows one absorption maxima. It has two shoulders at about 380 and 320 nm followed by one broad peak at about 270 nm which is the concomitant observation for both the *Eulophia* species. The absorption of the UV-Vis spectra of the standard phenols (Gallic and Tannic acid) and \(\beta\)-sitosterol in combination indicated that there is no absorption peak over the wavelength 265 nm. This observation indicated that the extract contains mainly \(\beta\)-sitosterol and the phenolic compounds, further, it is well supported by HPLC studies.

Detection of \(\beta\)-sitosterol and phenolic compounds in *E. herbacea* and *E. ochreata* on the basis of spectral (UV-Vis) and chromatographic-analysis (TLC and HPLC).

Spectral analysis-UV-Vis spectrum
The presence of sterol (standard \(\beta\)-Sitosterol) and phenols (standard Gallic and Tannic acid) are confirmed by TLC using appropriate solvent system and spraying reagent.

Detection of \(\beta\)-Sitosterol
From Figure 4a, the results of chromatographic analysis indicate the circular spot for the \(\beta\)-sitosterol (standard) with \(R_t\) value 0.29. In case of MEEH and MEEO, two spots are observed with \(R_f\) values 0.32 and 0.29 respectively which are indicative of presence of \(\beta\)-sitosterol. The upper unknown spot with \(R_t\) value 0.48 and 0.46 are observed in MEEH and MEOE respectively. This result clearly indicates that MEEH and MEEO contain \(\beta\)-sitosterol in different concentration in both the plant extracts.

For the detection of Phenolic compounds
According to result analysis (Figure. 4b) one oval spot for GA (standard) with \(R_t\) value 0.26 and three separate spots for TA (standard) with \(R_t\) values 0.08, 0.26 and 0.43 of lower, middle and upper spot respectively. For the MEEH, similar \(R_t\) values for GA (0.26) and TA (0.08, 0.26 and 0.43) are observed as oval spots. For the MEOE, (Figure 4c) similar \(R_t\) values for GA(0.26) and TA (0.09, 0.25 and 0.33) are observed as oval spots. One unknown spot with \(R_t\) value 0.86 and 0.72 is also observed in MEEH and MEOE respectively. This observation clearly indicates that MEEH and MEEO contain GA as well as TA in different concentration as noted during color development.

HPLC (High performance Liquid Chromatography)
The qualitative HPLC profile of the studied *Eulophia* species at wavelength 210 nm due to peak sharpness and proper base line and recorded the retention time (\(R_t\) in min.). HPLC chromatogram has shown only 4-5 peaks. However, only 2-3 peaks are prominent with significant per cent area and height (> 5 %).

The most abundant peak indicated, \(\beta\)-sitosterol content (Figure 5 and Table 5) of the studied plant species in MEEH is 79.7% and in MEOE is 94.6%, which coincides with that of the standard retention time (\(R_t = 5.45 \text{ min.}\)) of \(\beta\)-sitosterol. The other prominent peaks reported are due to the phenolic content of the extract as per the standard phenols like gallic acid (\(R_t = 5.01 \text{ min.}\)) and tannic acid.
Table 4. Physico-chemical parameters of E. herbacea and E. ochreata tuber powder

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Ash% w/w</th>
<th>Solvent extract%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Ash</td>
<td>Acid-insoluble Ash</td>
</tr>
<tr>
<td>Eulophia herbacea</td>
<td>14.10 ± 0.19</td>
<td>±</td>
</tr>
<tr>
<td>Eulophia ochreata</td>
<td>12.20 ± 0.17</td>
<td>±</td>
</tr>
</tbody>
</table>

All values are expressed as mean ± SEM, + indicate presence and – indicate absence

Secondary metabolites like flavonoids, total phenolic

Table 5. Preliminary phytochemical screening of tuber extracts of E. herbacea and E. ochreata

<table>
<thead>
<tr>
<th>Sr No</th>
<th>Solvents</th>
<th>Type of Secondary Metabolite</th>
<th>Eulophia herbacea</th>
<th>Eulophia ochreata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PE BZ CH MeOH H Aq PE BZ CH MeOH H Aq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Flavonoids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>Glycosides</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>Phenols</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>Phytosterol or Steroids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>Saponins</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Tannins</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>Triterpenes</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

PE = Pet. Ether; BZ = Benzene; CH = Chloroform; MeOH = Methanol; Aq = Water.

(Rf = 4.26 min.). Secondly, both these extracts contain some phytophenols like gallic acid 11.6% in MEEH and 0.8% in MEEO whereas MEEO contains additional phenol, Tannic acid (0.8%).

In vitro antioxidant activity of methanolic extract of Eulophia species

Evaluation of Free Radical scavenging property of various extracts of E. herbacea and E. ochreata by DPPH

For DPPH radical scavenging property, as concentration increases, absorbance decreases and hence % inhibition increases (Table 6). The antioxidant activity of β-sitosterol increased in a dose dependent manner. About 20, 40, 60, 80 and 100 μg of β-sitosterol from MEEH and MEEO showed 12.70, 23.83, 55.76, 62.53 and 67.58% inhibition respectively in DPPH free radical scavenging assay. The DPPH radical scavenging percentage in β-sitosterol from MEEH is very close to that of ascorbic acid while the percentage in β-sitosterol from MEEO is about 21% more than that of ascorbic acid. The positive correlation between antioxidant property and β-sitosterol in MEEH and MEEO was noted (Table 6). Total antioxidant potential maybe due to compounds and β-sitosterol.

Reducing Power Assay

The reducing power of the β-sitosterol from MEEH and MEEO increased with increase in absorbance. The effect of β-sitosterol on reducing power increased in a dose dependent manner (Table 6). The reducing property for the methanolic extract in both the species is close to the property of positive control, ascorbic acid. The MEEO has strong reducing power than MEEH.

DISCUSSION

The detection tests of secondary metabolites of tuber powder of E. herbacea and E. ochreata are positive for steroids, tannin, anthroquinone glycoside, muciluge and starch however negative for alkaloids. The methanolic extracts have appreciable amount of flavonoids.

The applied parameter used for the identification of plant material is estimation of ash value that determines the quality, purity and nature of material added to the drug as an adulterant. The total ash and sulphated ash as reported earlier was almost 50% less than the present study. The % solvent extraction values of E. herbacea was in similar trend as in present study in the order: water > methanol > benzene > chloroform > petroleum ether for

IJPPR, Volume 10, Issue 9: September 2018 Page 313
E. herbacea as well as E. ochreata are 0.95, 1.67, 1.27, 4.30 and 29.75 in E. herbacea and 0.99, 1.80, 1.34, 5.47 and 15.30 in E. ochreata in petroleum ether, benzene, chloroform, methanol and water respectively. This indicates that extraction of soluble ingredients in the extract is dependent on the polarity of the solvent. Earlier workers observed the tubers of test plants have high carbohydrate content and concluded that they are very good source of energy. Protein supports nutritive value of tuber. Less than one per cent lipid content indicates that plant tissues are free of the oily substances. A diet providing 1-2% of its caloric energy as fat is said to be sufficient for human beings as excess fat consumption is implicated in certain cardiovascular disorders such as atherosclerosis, cancer and aging. Our result was in agreement with Tatiya et al. Secondary metabolite analysis is necessary for extraction, purification, separation, crystallization, identification of various phytocompounds. The methanolic extract showed higher level of phenols (118.70 mg/g in E. herbacea; 125.1 mg/g in E. ochreata) than the other secondary metabolites. The higher amount of phenol is important in regulation of plant growth, development and disease resistance. Usually Eulophia tubers contain highest amount of phenolic contents. The flavonoid contents in E. herbacea and E. ochreata are noted 70.7 mg/g and 71.7 mg/g respectively. Earlier reports revealed that plant phenolic compounds including flavonoids are potent antioxidants with reported antimutagenic, anticarcinogenic, anti-inflammatory, antiallergic and antiviral effects. The Eulophia tuber samples collected from different locations of India showed significant variations in the contents of sterols, phenols and flavonoids. The present investigation showed significant variation in the contents like phenol, flavonoids, and tannin when compared to above mentioned reports. These variations are due to number of environmental factors such as climate, altitude, rainfall etc. as mentioned by

<table>
<thead>
<tr>
<th>S. No</th>
<th>Primary Metabolites</th>
<th>E. herbacea</th>
<th>E. ochreata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carbohydrates</td>
<td>28.54 ± 6.52</td>
<td>29.13 ± 5.43</td>
</tr>
<tr>
<td>2</td>
<td>Proteins</td>
<td>17.39 ± 2.15</td>
<td>17.07 ± 2.07</td>
</tr>
<tr>
<td>3</td>
<td>Lipids</td>
<td>0.99 ± 0.15</td>
<td>0.99 ± 0.35</td>
</tr>
</tbody>
</table>

Values are % means of three independent analyses ± SD (n=3)
content in E. herbacea (42.7%) and E. ochreata (37.33%) tubers was higher than the reported values17, 20 31.5%, 22.90% respectively, may be due to season variation. Aberoumand and Deokule20 have estimated the calorific value 288.25 kcal/100g (DW) in E. ochreata tubers which is an indication that it could be an important source of dietary calories. High calorific content of the tubers may be attributed to high total carbohydrates content. The considerable content of proanthocyanidin may attribute to antimicrobial, insecticidal activities, as in nature, proanthocyanidins serve among other chemical and induced defense mechanisms against plant pathogens and predators, as occurs in strawberries39.

Phytochemical nature of MEEH and MEEO exhibit presence of β-sitosterol as detected quantitatively and confirmed chromatographically. These results are in accordance with the reported values of E. epidendraea16 and E. herbacea17 respectively. This study reveals that the marked percentage of β-sitosterol confers strong radical scavenging and reducing power ultimately to strengthen the natural antioxidant potential to the methanolic extract of test plants and that could be exploited for their medicinal properties and neurochemicals. Presence of β-sitosterol may also be attributed to hormonal properties such as estrogenic34,53, antifertility60. Such observations also recorded in our laboratory for MEEH and MEEO experimentally.31,11. The higher concentration of β-sitosterol owes potenty, aphrodisiac activity, prevention of heart disease, hypercholesterolemia, rheumatoid arthritis, tuberculosis, prostatic hyperplasia61,62; used for modulating the immune system59, anticancer63 (colon); antidiabetic64.

Table 5. HPLC results showing percentage of content in MEEH and MEEO.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Retention time (Rt)</th>
<th>Content</th>
<th>Percentage!</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>5.01</td>
<td>Gallic acid</td>
<td>93.13</td>
</tr>
<tr>
<td></td>
<td>5.45</td>
<td>β-Sitosterol</td>
<td>100.00</td>
</tr>
<tr>
<td></td>
<td>4.26</td>
<td>Tannic acid</td>
<td>93.43</td>
</tr>
<tr>
<td>MEEH</td>
<td>5.10</td>
<td>Gallic acid</td>
<td>11.56</td>
</tr>
<tr>
<td></td>
<td>5.45</td>
<td>β-Sitosterol</td>
<td>79.69</td>
</tr>
<tr>
<td>MEEO</td>
<td>4.00</td>
<td>Tannic acid</td>
<td>00.79 *</td>
</tr>
<tr>
<td></td>
<td>5.43</td>
<td>β-Sitosterol</td>
<td>94.56</td>
</tr>
<tr>
<td></td>
<td>5.13</td>
<td>Gallic acid</td>
<td>00.82 *</td>
</tr>
</tbody>
</table>

* Trace amount

Kokate et al.53.

All secondary metabolites have specific functions. The presence of β-sitosterol is recorded in appreciable amount in both MEEH and MEEO extract. Sterols or steroids have hormonal like activities54,55 and aphrodisiac activity in Eulophias may be attributed to the presence of β-sitosterol13. The polyphenols and flavonoids exhibit antioxidant properties in the extracts. The noticeable percentage of polyphenolic compounds may show beneficial effects on human health and also possess antiviral, anti-inflammatory, antitumour, antinaemic and antioxidative activity56, 57. The mucilage has a good potential as a binder for conventional tablet formulations58 and such property of binder in MEEH and MEEO extracts may be due to high amount of mucilage. The crude fibers content in E. herbacea is more than that of E. ochreata tubers, which could be a valuable source of dietary fibre in human nutrition. The crude fibre

Table 6. DPPH radical scavenging activity of extract of tubers of E. herbacea and E. ochreata

<table>
<thead>
<tr>
<th>β-sito</th>
<th>DPPH scavenging %</th>
<th>% Increase in reducing power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascorbic acid</td>
<td>β-sito (MEEH)</td>
<td>β-sito (MEEO)</td>
</tr>
<tr>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>20</td>
<td>20.19</td>
<td>21.01</td>
</tr>
<tr>
<td>40</td>
<td>48.57</td>
<td>42.19</td>
</tr>
<tr>
<td>60</td>
<td>68.78</td>
<td>72.26</td>
</tr>
<tr>
<td>80</td>
<td>87.38</td>
<td>84.82</td>
</tr>
<tr>
<td>100</td>
<td>92.04</td>
<td>93.78</td>
</tr>
<tr>
<td>Avg</td>
<td>105.65</td>
<td>104.69</td>
</tr>
</tbody>
</table>

β-sito means β-sitosterol; MEEH- Methanolic extract of E. herbacea; MEEO- Methanolic extract of E. ochreata
High antioxidant property corresponds to high total phenolics in the tested extracts. The antioxidant property of extract is mainly due to their redox properties, which allow them to act as reducing agents, hydrogen donors and single oxygen quenchers\(^5\). The interests of phenolics are increasing in the food industry because they retard oxidative degradation of lipids and improve the quality and nutritional value of food\(^6\). The extractability of phenol/flavonoids is dependent on nature of solvent and consequently the antioxidant property of the extracts also differs as well.

The DPPH free radical scavenging of antioxidants is due to their hydrogen donating ability. The plants with higher donating capacity have shown higher DPPH free radical scavenging activity\(^6\). Our results are agreed with recent findings\(^6\) based on free radical quenching potential. In this study, the strong reducing power was seen in the methanolic extract than other solvent extracts of *E. herbacea* and *E. ochreata*, may be due to the biologically active compounds or phenolic compounds in the extract which possess potent donating abilities. This assay further confirmed the antioxidant properties of the extracts. The potential scope of these plants may serve the mankind for regulating fertility/remedy on reproductive health/ disorder in both men and women. Their medicinal uses are not yet fully established clinically. The output of present study provides a clue to find a prototype of compound to synthesize possible drugs with higher efficacy. *E. ochreata* possesses life encouraging activities for human and justify its name as “Amarkand”, which in turn, comply this statement stated by local traditional medical practitioners of North Maharashtra region, Maharashtra.

ACKNOWLEDGEMENT

Authors are also thankful to their respective Management and Principal of their colleges, for permission to use infrastructure facilities and continuous encouragement to carry out this work. One of us (MCP) is thankful to UGC (WRO, Pune) for providing the partial support to this work through financial assistance by sanctioning Minor research project [F. No.: 47-353/12(WRO) dated 25-02-2013].

REFERENCES

13. www.ayushveda.com
18. Aberoumand A. Qualitative determination of

29. Pietta PG. Flavonoids as antioxidants. Journal of Natural Products 63(7); 1035-1042, 2000.

40. Mahajan RT, Gajare SM. Manifestation of erectile dysfunction with adaptogenic antioxidant aphrodisiac plants. International Journal of Pharmaceutical and Biomedical Research 3(1); 52-68, 2012.

42. Mau EJ. Antioxidant properties of several medicinal mushrooms. *Agricultural Food Chemistry* 50; 6072-6077, 2002.

43. Pietta PG. Flavonoids as antioxidants. *Journal of Natural Products* 63(7); 1035-1042, 2000.

44. Aberoumand A. Survey on some food plants as sources of antioxidants. *Innovative Romanian Food Biotechnology* 8 (3), 22-25, 2011c.

49. Aberoumand A. Phytochemical and nutritional

64. http://www.livingnaturally.com

