Flavonoids, including quercetin, have been reported to modulate the ability of *Staphylococcus aureus* to adhere to host tissue without exhibiting direct antibacterial activity. In the present study, we evaluated the interaction of *S. aureus* pretreated with 40 μg/mL of quercetin with neutrophils to assay oxidative burst stimulation, using luminol-amplified chemiluminescence. *S. aureus* pre-incubated with subinhibitory concentration of quercetin induced significantly less light emission by neutrophils than did untreated bacteria. The results of the present study demonstrate that quercetin decreases *S. aureus* uptake by neutrophils.

KEYWORDS: Quercetin, *Staphylococcus aureus*, neutrophils, oxidative burst.

INTRODUCTION

Staphylococcus aureus produces a wide variety of molecules that are important in the interaction with the host organism. Many surface proteins are covalently anchored to the bacterial cell-wall peptidoglycan through a general sorting mechanism catalyzed by a superfamily of membrane-associated transpeptidases termed sortases. Two sortase isoforms, sortase A (SrtA) and sortase B (SrtB), have been identified in *Staphylococcus aureus* (Mazmanian et al., 2001). The SrtA isoform plays a critical role in the pathogenesis of gram-positive bacteria by modulating the ability of the bacterium to adhere to host tissue and others virulence associated proteins to cell wall peptidoglycans. Proteins such as protein A and fibronectin-binding proteins are attached to the cell wall by this type of reaction.

It has been suggested that sortase inhibitors should act as anti-infective agents and disrupt the pathogenesis of bacterial infections without affecting microbial viability. Therefore, inhibitors of SrtA might be promising candidates for the treatment and/or prevention of gram-positive bacterial infections. Since sortases were identified, there have been several investigations for sortase inhibitors of natural and synthetic origin.

Flavonoids represent a large group of plant phenols. These compounds can be classified into flavones, flavonols, flavanones, isoflavones, and anthocyanidins. Naturally occurring flavonols have been reported to inhibit the adhesion of *S. aureus* to fibrinogen via inhibition of sortases and preliminary findings on the influence of structure on activity suggest that the occurrence of a hydroxyl group at C-3 of ring C and meta-hydroxy groups at C-2’ and C-4’ of the B ring is required for appreciable sortase inhibition.

Sortase is essential for the functional assembly of surface proteins and for the pathogenesis of *S. aureus*. The effect of polyphenols on staphylococcal adherence to eukaryotic cells has been reported, but the influence of these compounds on bacterial interaction with phagocytes is also an important task. This study investigated the influence of pretreatment of *S. aureus* with subinhibitory concentration of quercetin on phagocytosis by neutrophils.

MATERIALS AND METHODS

Chemicals and Culture Media: Quercetin (Q0125), DMSO (D8779), Ficoll-Paque™ (D1047), oyster glycogen, luminol and Zymosan A were obtained from Sigma Chemicals Co. (St. Louis, MO, USA), Mueller-Hinton broth was purchased from Difco (Detroit, MI, USA). Quercetin was dissolved in DMSO for stock solution of 10 mg/mL. The stock solution was diluted serially in Mueller-Hinton broth and dilutions from 0.46 to 120 μg/mL were inoculated with *S. aureus* (10⁵ colony-forming units/mL). The final concentration of DMSO in the assay did not affect bacterial growth. All tests were performed in triplicate with controls containing standard antimicrobials. The concentration of quercetin selected for test was 40 μg/mL, which was found to inhibit the bacterial growth by 50% relative to the quercetin-free control after 24 h of incubation.

Chemiluminescence Assay: Bacteria were grown overnight at 37°C in Mueller-Hinton broth either in the presence or in the absence of quercetin (40 μg/mL),...
washed three times in Dulbecco’s phosphate buffered saline without calcium (PBS-D), and the suspension was adjusted photometrically to 2 X 10^8 colony-forming units/mL. The phagocytic process was evaluated using luminol-enhanced chemiluminescence assay to follow the respiratory burst of neutrophils exposed to staphylococci grown with or without quercetin in the medium. Rat peritoneal granulocytes were obtained by intraperitoneal injection of 10 mL of oyster glycogen solution 0.5% (w/v). Peritoneal exudate cells (PECs) were collected 12h later with PBS-D containing 10 IU heparin/mL. The cells were washed twice and carefully layered onto 5 mL of Ficoll-PaqueTM and centrifuged for 30 min at 700 g. The granulocytes were washed twice with Dulbecco's phosphate buffered saline and adjusted to a concentration of 2.0 x 10^6 cells/mL. The proportion of neutrophils in the PECs was determined by cell staining with May-Grünwald-Giemsa. Cell preparations contained over 95% neutrophils. Neutrophils (2.0 x 10^6 cells/mL) and luminol (2 x 10^{-5} M) were added to a tube containing PBS-D. This vial was placed in a lightproof chamber of a BioOrbit model 1251 luminometer (Turku, Finland) and the carousel was rotated to bring the sample in line with the photomultiplier tube, to record background activity. The stimulus, consisting of 1mg/mL Zymosan A or bacteria, was added to the suspension of neutrophils at a final volume of 1.0 mL. The chemiluminescence response was expressed as the integrated area (IA) below the resulting chemiluminescence curve recorded over a period of 0 to 60 min, calculated by the program Multiuse 2.0. This integrated light emission was used as the analytical parameter. All experiments were carried out in triplicate and repeated at least three times. Statistical difference between groups was determined by one-way analysis of variance (ANOVA). A difference was considered statistically significant when the P-value was <0.05.

RESULTS AND DISCUSSIONS
Flavonoids are a family of plant-derived compounds with potentially exploitable activities, including direct antibacterial activity, synergism with antibiotics, and suppression of bacterial virulence. Currently, there have been researches in the literature describing the potential bacterial antiadhesion activity of flavonoids. In the present study, interaction between S. aureus pretreated with 40 μg/mL of quercetin (MIC > 120 μg/mL) and neutrophils was investigated in vitro by luminol-enhanced chemiluminescence. Luminol is membrane permeable and thus excited by both intra- and extracellular produced reactive oxygen species formed by phagocytes. The chemiluminescence response to the bacteria treated with quercetin (IA = 60276 ± 6188 mV) was significantly lower than that obtained with the untreated bacterial cells (IA = 88965 ± 8488mV) (p<0.05) (Figure 1). The decrease in the response of the neutrophils can be explained by inhibition of the synthesis or expression of adhesion factor that mediate interactions with phagocytes. This study does not have the proposal to identify mechanisms by which quercetin is able to reduce the bacterial uptake by neutrophils.
S. aureus expresses a lot of cell surface-associated proteins (adhesins) that interact with various components of extracellular matrix of eukaryotes. S. aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMMs family) are involved in the first step of S. aureus infections. MSCRAMMs recognize extracellular matrix components such as fibrinogen and fibronectin, and are anchored to the bacterial wall peptidoglycan by a mechanism that involves the enzyme sortase 1,3,18.

The correlation between antibacterial activity and membrane interference has previously been described for sophoraflavone G (flavonane) 19, catechins (flavan-3-ols) 20, and galangin (flavonol) 21. Even though quercetin at a low level has little effect on S. aureus viability, the knowledge that this flavonol is able to affect the adherence of staphylococci to cell surfaces may represent an advance for its potential application in the prevention of infections, considering that bacterial adherence is the initial event in the pathogenesis of bacterial infection. As both adherence and phagocytosis occur in association with polymorphonuclear leucocytes during infection, from this experiment we conclude that quercetin, paradoxically, may contribute to staphylococcal pathogenesis during the inflammatory stages of staphylococcal disease by decreasing the bacterial uptake by phagocytes.

ACKNOWLEDGMENT
This study was supported by a grant from CAPES to M.S. de Camargo.

REFERENCES