Effect of Hesperidin isolated from orange peels on Cisplatin-induced Nephrotoxicity

Sreedevi Adikay*, Spandana U., Bharathi ,K.

Institute of Pharmaceutical Technology, Sri Padmavathi Mahila Viswavidyalayam Tirupati- 517502.

ABSTRACT
Present study is designed to evaluate the effect of Hesperidin, a naturally occurring citrus flavanone isolated from orange peels, against cisplatin-induced nephrotoxicity. Nephroprotector activity was evaluated in male Albino rats. Nephrotoxicity induced by intraperitoneal administration (6 mg/kg,i.p., single dose) of cisplatin. Hesperidin was administered by gastric intubation. Nephroprotector activity of hesperidin was tested at two dose levels i.e., 200mg and 400mg/kg Body weight. Nephrotoxicity was assessed by estimating blood urea nitrogen, serum creatinine and estimating urinary parameters. Cisplatin nephrotoxicity was characterized by elevated levels of blood urea nitrogen, serum creatinine, and high protein excretion in urine and reduced levels of creatinine clearance. Hesperidin produced significant protection against cisplatin – induced nephrotoxicity in dose dependent manner.

Key words: Hesperidin, Cisplatin, nephrotoxicity.

INTRODUCTION
Cisplatin is one of the most effective anticancer drugs administered to treat a variety of cancers such as ovarian cancer[1][2][3] , bladder and other genito– urinary tumors[4][5] , head, neck cancers[6][7][8][9] and lung cancer[10][11][12][13]. High doses of cisplatin are more effective than low doses in Ovarian and colorectal cancer[14]. However high dose treatment with cisplatin -induce nephro and neuro toxicity. In spite of hydration, hypertonic saline and diuretics to protect against renal complications, a high percentage of treated patients develop from mild to severe renal imbalance. The mechanism of cisplatin nephrotoxicity still not fully understood, but this cause is the dose-limiting factor in clinical studies[15]. However the generation of free oxygen radicals in tubular cells has been proposed as an important pathogenic process[16]. Various data indicate that the cisplatin induces Oxidative stress[17][18] lipid peroxides[19] and DNA damage[20][21]. Histological results of earlier studies showed that cisplatin preferentially induced structural damage in the cortical zone of the kidney[7] several antioxidants such as L-histidinol[7] , thymoquinone[22] and lipoic acid[23] capscicin[24], Ascarbic acid[25], curcumin[26], have been tested for their ability to protect against cisplatin-induced nephrotoxicity in experimental animals and all of them exhibited significant protection against cisplatin-induced nephrotoxicity. Flavonoids, poly phenolic compounds are another group of interested compounds, which possess antioxidant properties, are found in fruits, vegetable, nuts and seeds as well as most types of tea and red wine[27]. Flavonoids have been reported to exhibit a wide range of biological effect. Flavonoids such as Quercetin[28], Naringenin[29] were showed good nephroprotection. Hesperidin is a citrus flavonone, which possess wide spectrum of biological activities including antioxidant activity. Literature survey reveals that substances with good antioxidant activity exhibited good nephroprotection against cisplatin-induced nephrotoxicity. Hence, present work designed to evaluate the nephroprotector activity of natural dietary anti oxidant, hesperidin against cisplatin-induced renal toxicity.

MATERIALS AND METHODS
Chemicals: Cisplatin injection was purchased from market; and all other chemicals were purchased from either S.D. or Merck India. Biochemical parameters were estimated by using commercial kits.
Isolation and characterisation of hesperdin - Orange peels were collected, dried and powdered isolated according to procedure mentioned in Harborne 1986. Characterized by IR, NMR and MASS.
Pharmacological Screening: Animals- Healthy wistar adult male albino rats weighing 150-200g were used for study. They housed in poly propylene cages and fed standard rat pellet diet and water ad libitum
Experimental design- Animals were divided into 4 groups. Group 1 animals received vehicle (1%CMC). Group II animals received cisplatin on day 5. Group III and IV received 200mg/kg and 400 mg/kg Bd.Wt. hesperdin respectively from day 1 to day 10 and On day 5 these groups received cisplatin injection. GroupV received only hesperdin for 10days i.e., from day 1 to day 10. On day 9, urine was collected and estimated urinary functional parameters. Animals were sacrificed on day 10
The SC levels were increased in Gr III animals, which observed in BUN and SC levels when compared with group V animals there was no significant changes were expressed in mg/dl. With the administration of hesperdin cisplatin (6mg/kg) alone showed significant elevated levels of BUN when compared to normal. On oral administration of hesperdin showed significant increase in Clcr.

RESULTS

The results are expressed as mean±SEM and the data analysed using one way analysis of variance followed by post hoc Student-Keuls test using SPSS computer software for in vivo studies. Statistical significance was set at P≤ 0.05.

STATISTICAL ANALYSIS

The levels of creatinine clearance (Clcr) were expressed in ml/hr/100g bd wt. There were no significant changes in Clcr levels in hesperdin given animals when compared to normal group I animals.

Effect on LPO activity:Animals which are received cisplatin alone increased levels of LPO when compared with normal group I. The animals received high dose of hesperdin (Group-V) showed decrease levels of LPO.

DISCUSSION

Cisplatin is an antitumour drug, it has been successful in the bladder, lung, head, neck, cervical especially testicular and ovarian cancers[31]. Although it is active against wide variety of tumors but serious and usually dose limiting toxicity of cisplatin is renal. The precise mechanism of cisplatin-induced nephrotoxicity has not been elucidated, but it has been suggested that the oxygen free radicals play an important role[32],[33],[34]. Cisplatin-induced nephrotoxicity is related to increase in lipid peroxide levels in kidney[35]. Reports also suggest that there is an involvement of nitric oxide which induces the nephrotoxicity by cisplatin[36],[37].

Tsulsumishitha and coworkers reported the involvement of H2O2 in cisplatin-induced nephrotoxicity in outer medullary cortical tubule (OCMT) cells[38]. Additionally, more than half of patients developed hypomagnesemia and persisted for months after cisplatin treatment[39] and clinical reports demonstrated that patients who received cisplatin suffered reversible azotemia, 1-2 weeks following treatment[40]. Numbers of studies have shown that reduction of the glomerular filtration rate is common in patients receiving cisplatin treatment. On the other hand, there are well-known evidences that oxidative and nitrosative stress is involved in the kidney damage after cisplatin administration.

However the generation of oxygen free radicals in tubular cells has been proposed as an important pathogenic process[16]. Various data indicate that cisplatin induces oxidative stress[41],[17],[42], lipid peroxides[18] and DNA damage[20],[21].

Natural antioxidants such as Ascorbic acid[25], Spirulina, Quercetin[26], Rutin[43], have been tested for their ability to protect against cisplatin-induced nephrotoxicity in experimental animals and reported that they exhibited good nephroprotection. Flavonoids are the polyphenolic compounds are found in fruits and vegetables, nuts and...
seeds,[27] activity and they may play a dietary role in protection against chronic diseases such as cancer and cardiovascular disease[44]. They have antioxidant and antiproliferative properties[45].

In present study, the effect of cisplatin is similar to those previously described[46],[47],[7],[22],[23], i.e., elevated serum urea, serum creatinine levels, reduced creatinine clearance, increased urinary protein excretion. Oral administration of hesperidin at a dose of 200 and 400mg/kg/day for 10 days starting 5 days before cisplatin single i.p. injection produced significant protection of renal function. hesperidin reduced the extent of cisplatin -induced nephrotoxicity as evidenced by significant reduction in serum urea and creatinine levels, decreased urinary functional proteins and increased creatinine clearance.

Previous reports also evidenced that cisplatin exerted its nephrotoxic effects through LPO [48], [28] . In the present study, cisplatin induced accumulation of lipid peroxides Cisplatin-induced alterations in lipid peroxides is markedly improved by hesperidin.

In conclusion, the results provide hesperidin, is attenuates the nephrotoxicity of cisplatin in rats. The results provide further insight into the mechanisms of cisplatin -induced nephrotoxicity and confirm the antioxidant potential of hesperidin.

ACKNOWLEDGEMENT
The authors are grateful to AICTE for the financial support for this research work.

REFERENCES
1. Wittshaw E, Cisplatin NDA amendment1977; 4:2: 00163
5. Burch PA; Phase II Trial of Combination Paclitaxel and Cisplatin in Advanced Urothelial Carcinoma (UC) (Meeting abstract); ASCO Annual Meeting 1999; Ab.No.1266.

42. Mayer KB and Madias NE. Cisplatin toxicities; *Electrolyte Metab.* 1994;20 : 201-13.

46. Heidemann, Gerkens J, Jackson EK, and Branch RA. Attenuation of Cisplatin-induced nephrotoxicity in the rat by high salt diet furosemide and acetazolamide; Naunyn Schmiedeberg’s *Arch. Pharmocol.* 1989;329 : 201-05.
