Antimicrobial Activity and Phytochemical Screening of Extracts from Leaves of *Croton polyandrus* Spreng

1Fernandes HMB, 1Leão AD, 1Oliveira-Filho AA, 1Sousa JP, 2Oliveira TL, 1Lima EO, 1Silva MS, 1Tavares JF

1Graduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraiba, João Pessoa-Paraiba-Brazil
2Department of Pharmacy, Federal University of Paraiba, João Pessoa-Paraiba-Brazil

ABSTRACT
Aromatic plants have been used in folk medicine as antimicrobial agents since ancient times. The extracts were subjected to phytochemical tests for plant secondary metabolites, tannins, saponins, steroid, alkaloids and flavonoids. The antimicrobial activity of extracts was studied using the microdilution method and determination of minimal inhibitory concentration (MIC) value. Investigations on the phytochemical screening of *Croton polyandrus* leaves extracts revealed the presence of saponins, steroids and tannins. The results obtained with *Croton polyandrus* ethyl acetate and dichloromethane extracts showed promising antifungal activity against *Candida albicans* (ATCC 90028) with MIC of 64 µg/mL and 128 µg/mL, respectively.

Key words: *Croton polyandrus*, extracts, antimicrobial activity.

INTRODUCTION
Historically, plants have provided a source of inspiration for novel drug compounds, as plant derived medicines have made large contributions to human health and well being.

Aromatic plants have been used in folk medicine as antimicrobial agents since ancient times. Although approximately 20% of the world plants have been submitted to pharmacological or biological test, it could be concluded that natural products from plant origin are an important source to discover new leads with economical and pharmaceutical importance and great possibilities to be developed as drugs, dyes, fragrances and pesticides, among others. To obtain novel and promissory substances many plant extracts have to be assayed. For example, Mendes et al. (2011) assayed 2 plant extracts and found extracts with strong antimicrobial activity.

Furthermore, the screening of plant extracts as antimicrobial agents is necessary to go insight into medicinal flora and get the molecules responsible for this activity and add value to natural resources from tropical areas.

Many Euphorbiaceae are well known in different parts of the world as toxic and/or medicinal plants. The high diversity of the described effects is a reflex of the high chemical diversity of this plant group. *Croton* is a large genus of Euphorbiaceae, comprising around 1,300 species of trees, shrubs and herbs distributed in tropical and subtropical regions of both hemispheres.

Based on the medicinal properties of plants of *Croton* genus, the present study aimed to investigate the antimicrobial activity of the extracts isolated from *Croton polyandrus* belongs to the family Euphorbiaceae.

MATERIALS AND METHODS
Preparation of plant extract: The leaves of *Croton polyandrus* were collected in the town of Santa Rita, Paraiba, Brazil. The botanical material was identified by Dr. Maria de Fatima Agra of the Botany Section of the Laboratory of Pharmaceutical Technology "Prof. Delby Fernandes de Medeiros". Voucher specimens of these plants are deposited in the Herbarium Prof. Lauro Pires Xavier (JPB), exsicata Agra & Gois 1446 (JPB), Federal University of Paraiba.

The powder aerial parts - leaves (3000 g) was sprayed dried and subjected to maceration with hexane, dichloromethane, ethyl acetate and ethanol in a stainless steel container for 72 hours each extraction. After extraction, the extraction solutions were concentrated in a rotary evaporator under reduced pressure at a temperature of 45 °C to yield extracts: hexane (40.2 g), dichloromethane (46.5 g), ethyl acetate (59.8 g) and ethanol (194.4 g).

Phytochemical analysis of the plant extracts: The extracts were subjected to phytochemical tests for plant secondary metabolites, tannins, saponins, steroid, alkaloids and flavonoids in accordance with Trease et al. (1989) and Harborne (1998) with little modification.
Table 1 - Phytochemical analysis of the extracts from C. polyandrus.

<table>
<thead>
<tr>
<th>Extracts/Secondary metabolites</th>
<th>Saponins</th>
<th>Steroids</th>
<th>Tannins</th>
<th>Alkaloids</th>
<th>Flavonoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>EtOH extract</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acoet extract</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexane extract</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichloro extract</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(+) presence and (-) absence

Table 2 – Antibacterial activity of the extracts from C. polyandrus.

<table>
<thead>
<tr>
<th>Substance/Bacteria strain</th>
<th>EtOH extract (MIC)</th>
<th>Acoet extract (MIC)</th>
<th>Hexane extract (MIC)</th>
<th>Dichloro extract (MIC)</th>
<th>Negative control</th>
<th>Positive control (Chloramphenicol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus ATCC 13150</td>
<td>1024 µg/mL</td>
<td>1024 µg/mL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>S. aureus ATCC 25923</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>P. aeruginosa P 03</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1024 µg/mL</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>P. aeruginosa ATCC 25853</td>
<td>1024 µg/mL</td>
<td>1024 µg/mL</td>
<td>-</td>
<td>1024 µg/mL</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>E. coli ATCC 25922</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>E. coli 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

(-) no growth inhibition (+) growth inhibition

Table 3: Antifungal activity of the extracts from C. polyandrus.

<table>
<thead>
<tr>
<th>Substance/Bacteria strain</th>
<th>EtOH extract (MIC)</th>
<th>Acoet extract (MIC)</th>
<th>Hexane extract (MIC)</th>
<th>Dichloro extract (MIC)</th>
<th>Negative control</th>
<th>Positive control (Nistatin)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans ATCC 90028</td>
<td>1024 µg/mL</td>
<td>64 µg/mL</td>
<td>-</td>
<td>128 µg/mL</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C. albicans LM-109</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C. tropicalis ATCC 13803</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C. tropicalis LM-P20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C. krusei LM-13</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>C. krusei LM-08</td>
<td>1024 µg/mL</td>
<td>-</td>
<td>-</td>
<td>1024 µg/mL</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

(-) no growth inhibition (+) growth inhibition

Bacterial and fungal strains: For antibacterial activity assays, were selected six strains of bacteria (Staphylococcus aureus - ATCC 13150, Staphylococcus aureus - ATCC 25923, Pseudomonas aeruginosa - P03, Pseudomonas aeruginosa - ATCC 25853, Escherichia coli - ATCC 25922 and Escherichia coli - 5) and for antifungal activity assays were selected 6 strains of fungi (Candida albicans – ATCC 90028, Candida albicans – LM 109, Candida tropicalis - ATCC 13803, Candida tropicalis – LMP 20, Candida krusei – LM 13 and Candida krusei – LM 08). All the microorganism strains tested belong to the collection of the Mycology Laboratory, Federal University of Paraíba. Bacteria and fungi were kept on Nutrient Agar (NA) slants at 4 °C. Inocula were obtained from overnight cultures grown on NA slants at 37 °C and diluted in sterile saline solution (NaCl 0.85% w/v) to provide a final concentration of approximately 106 Count Forming Unit per mL (CFU.mL⁻¹) adjusted according to the turbidity of 0.5 McFarland scale tube.

Antimicrobial assay: The microplate bioassay was used to determine the minimum inhibitory concentration (MIC) of Croton polyandrus extracts. The 96-well plates were prepared by dispensing 100 µL of double strength Nutrient Broth (NB) inoculated with the bacterium inoculum into each well prior to the assay. An aliquot (100 µL) of the extracts solutions at their respective concentrations was transferred into seven consecutive wells. The final volume in each well was 200 µL. The solution having the highest extracts concentration was added into the first well and the one having the smallest concentration was added into the antepenultimate well. The penultimate and the last well, containing 200 µL of Chloramphenicol (100 µg/mL) or Nistatin (100 U/mL), were used as the negative control and positive control, respectively. The microplate was asseptically sealed, followed by mixing on a plate shaker (300 rpm) for 30 seconds and incubated at 37 °C for 24 hours. The antibacterial and antifungal activities were detected using the colorimetric method by adding 200 µL of resazurin staining (0.1 g.100 mL⁻¹) aqueous solution in each well at the end of the incubation period. MIC was defined as the lowest essential oil concentration able to inhibit the bacterial growth as indicated by resazurin staining (dead cells were not able to change the staining...
color by visual observation – blue to red)12. All experiments were carried out at least twice with consistent results (Table 2 and Table 3).

RESULTS

Phytochemical screening of Croton polyandrous leaves Ethanolic extracts revealed the presence of saponins, steroidal and tannins. Yet the phytochemical screening of Croton polyandrous leaves hexane, dichloromethane and ethyl acetate extracts revealed the presence of steroids (Table 1).

The results for antimicrobial activity of the extracts with MIC value are show in Table 2 and Table 3. The activity was measured in terms of presence of microorganism growth, the extracts from Croton polyandrous show no antibacterial activity against either gram (+) or gram (-) bacteria. However, results obtained from the *in vitro* antifungal assay showed that the ethyl acetate (Acoet) and dichloromethane (Dichloro) extracts show promising antifungal activity against Candida albicans (ATCC 90028) with MIC of 64 µg/mL and 128 µg/mL, respectively. Furthermore, these extracts showed low antifungal activity against Candida krusei (LM 08) with MIC of 1024 µg/mL.

CONCLUSION

Based on these results it can be stated that the Croton polyandrous extracts have an important antifungal activity against Candida species, which highlights the need for further studies with other fungal species to investigate the immense therapeutic potential of this plant species and with its isolated secondary metabolites.

ACKNOWLEDGEMENTS

The authors thank all the technical staff of the Mycology Laboratory and the Laboratory of Phytochemistry CCS/UFPB.

REFERENCES

