Silver Nanoparticles Synthesis, Stabilization and Characterization by Different Concentrations of Acacia senegal (l.) Willd. Extract and Evaluation of their Antibacterial Activity

Karunakar Rao Kudle¹, Madhukar Rao Kudle², Y.Prashanthi³, Ramchander Merugu³, *M.P.Pratap Rudra¹

¹Department of Biochemistry, Osmania University, Hyderabad-500007
²Department of Biochemistry, Kakatiya University, Warangal-506009
³Department of Biochemistry, Mahatma Gandhi University, Nalgonda-508254

INTRODUCTION

Nanotechnology consists of applied biology, chemistry, material science, physics, and engineering working at the nano level creating materials on the atomic level and alterations at molecular level. The silver particles that range from 1 to 100 nm are silver nanoparticles and are one of the most commonly utilized nanomaterials as they have unique optical, electrical, thermal and anti-microbial properties (Parameswari et al., 2010) and are being incorporated into products that range from photovoltaic to biological and chemical sensors. A number of approaches are available for the synthesis of silver nanoparticles by chemical and photochemical reactions thermal decomposition of silver compounds, microwave assisted process and recently via green chemistry route. The use of environmentally benign materials like plant leaf extract (Parashar et al., 2009), bacteria (Govindraju et al., 2009), fungi (David et al., 2010) (Roy et al.,2010) (Saifuddin et al.,2009) and enzymes for the synthesis of silver nanoparticles offers numerous benefits of eco-friendliness and compatibility for pharmaceutical and other biomedical applications (Shrivastava et al., 2007, Verma et al., 2010, Rai et al., 2009). In continuation of earlier work with silver nano particles synthesis using Cuminum cyminum, Stigmaphyllon litorale, Boswellia serrata, Moringa oleifera lam, Sterculia foetida fruit (Kudle et al., 2012, and 2013) and Securinega leucopurus (Donda et al., 2013), we here in report the synthesis of nano particles using Acacia Senegal leaf extracts at different concentrations.. Acacia farnesiana (Yallappa et al., 2013) was the only species which was used earlier for the silver nanoparticles. Experimentation: Fresh Acacia senegal leaf was washed 3 times with de-ionized water. 10g of the leaf was finely cut and were crushed and stirred with 100 ml de-ionized water and filtered by Whatman No.1 filter paper to get the extract. The filtrates are used as reducing agent and stabilizer. UV-Visible absorption spectra, FTIR, TEM was used for the characterization studies. Antibacterial Activity of AgNPs was analyzed by methods similar to those followed by Kudle et al. (2012, and 2013).

RESULTS AND DISCUSSION

The reduction of pure silver ions was monitored by measuring the UV-Vis spectrum of the reaction medium by diluting a small aliquot of the sample in distilled water. From UV results obtained, it is evident that the silver nanoparticles were formed and this was confirmed by the surface plasmon resonance exhibited in the range of 300-750nm. For Acacia senegal, silver nanoparticles exhibited maximum absorption peak at 439 nm. The flat curves of the graph represent the poly dispersed particles in the solution. (Fig2-b) Fourier-transform infrared spectroscopy was used for the analysis of the reduced silver. The
The spectrum was taken in the mid-IR region of 500–4000 cm\(^{-1}\). The spectrum was recorded using attenuated total reflectance (ATR) technique. The FTIR spectrum of leaf extract and silver nanoparticles is shown in Figure (2c-d). The bands obtained for different AgNPs produced from Acacia senegal are almost same with little variations at absorbed wavelengths and percentage transmittance. The leaf extract band near 3349 cm\(^{-1}\) corresponds to AgNPs, 3350 cm\(^{-1}\) O–H stretching H–bonded alcohols and phenols. The peak leaf extract and AgNPs around 1638 cm\(^{-1}\) corresponds to N–H bond primary amines. The extract and AgNPs peak around 1369 cm\(^{-1}\) corresponds to C–N stretching of aromatic amine group.

Zone of Inhibition is the area on an agar plate where growth of a control organism is prevented by an antibiotic (Ampicillin) and leaf extract also usually placed on the agar surface. The activity of the sample was observed by the formation of zone of inhibition after 12 hours incubation. The zone of inhibitions of different bacteria is given in the Figure (2-e). The control plates show the growth of bacteria in the absence of antibacterial agents. The clear zone surrounding the sample in the remaining plates shows the activity of the sample. The zone surrounding the sample is clear that shows complete zone of inhibition. The space surrounding the complete zone of inhibition is partial zone of inhibition where the activity decreases than complete zone of inhibition. Comparing the four compounds concentration (fig. 2-f), inhibitory activity of silver nanoparticles on two of the organisms is almost same. Transmission electron microscopy (TEM) analysis of the synthesized silver nanoparticles was performed. A drop of the silver nanoparticle suspension was placed on carbon coated copper grids and allowing the solvent to evaporate prior to analysis and show morphology, size of nanoparticles (fig2-G and H).

The reduction of aqueous Ag+ ions by the leaf extract at different concentrations of Acacia senegal plants is clearly seen. Reduction of the metal ions took place by the leaf extracts leading to the formation of silver nanoparticles. UV-Visible spectroscopy clearly shows that the size of particles differs as concentration of leaf extract changes. According to TEM images, Acacia senegal produced a mixture of rods and spherical nanoparticles, Acacia senegal sample is found to be the purest containing highest
% of silver with very less impurities and the other species with less amount impurities. From the analysis of FTIR peaks we can conclude that the AgNPs were surrounded by terpenoids, flavanoids and eugenol having functional groups of alcohols, phenols, amines, carboxylic acids, ethers and esters. the spherical shape of the particles confirms and particles to aggregate. Particle size analysis was performed for the silver nanoparticles synthesized using different concentration of curry leaf extract and the obtained results. The result indicates that the average particle size of the synthesized silver nanoparticles is highly influenced by the concentration of leaf broth. The similar trend was observed in TEM analysis. The smallest particle size was found to be 6-45nm, which was obtained using the leaf broth to silver nitrate solution ratio of 1:1. The antibacterial activity of silver nanoparticles was confirmed by Zone of inhibition. As the diameter of the zone of inhibition is high, we can conclude that silver is a very effective antibacterial agent. The activity of silver is effective against both the bacteria which gives a conclusion that it is effective against gram +ve and gram –ve bacteria. The further activity of silver on other micro organisms like fungi, virus, etc should be studied. Basing on these results silver can be used to cure the diseases caused by bacteria. Toxicity studies of silver nanoparticles on human pathogen opens a door for a new range of antibacterial agents.

ACKNOWLEDGEMENTS
Authors gratefully acknowledge the UGC, New Delhi for their financial support in the form of RFSMS and Junior Research Fellowship. We also acknowledge Coordinator DBT-OU-ISLARE and Director, CFRD, Osmania University for providing instrumental facilities during the study period.

REFERENCES