Cichorium intybus Linn: its Role in Hepatoprotection

*Mathur Neha1, Katare Pandey Deepshikha2, Aeri Vidhu3

1Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, India.
2Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh.
3Department of Pharmacognosy & Phytochemistry, Faculty of Pharmacy, Hamdard University, New Delhi

ABSTRACT
Liver plays a major role in detoxification, metabolism and excretion in the body; any impairment in its function may lead to implication’s on one’s health. Medicinal plants are now considered to be effective therapeutic aids for various hepatotoxicities. In India there are about 33 herbal formulations and Cichorium intybus is one of the significant component of some of these formulations. The ethnobotanical studies have reported the widespread uses of this plant in cardiac injuries, diabetes, hyperlipidemic disorders. It is also used for its anti-fungal and anti-cancer properties. This review focuses mainly on the hepatoprotective ability of Cichorium intybus and various scientific studies conducted on it. In Laboratory many chemicals have been known to induce hepatotoxicity in experimental animals like carbon tetra chloride (CCl4), galactosamine, thioacetamide, paracetamol, antibacterial drugs, d-galactosamine lipopoly saccharide (GalN/LPS), arsenic etc. Scientific studies conducted were studied and analysed. From various scientific studies it was found that the Cichorium intybus is effective in imparting hepatoprotection. Various studies reported on Cichorium intybus and its presence in various existing formulations proves its role in hepatoprotection. Further, its various parts like stem, leaves, roots, bark etc can be explored for better hepatoprotection alone or in combination with other plants for developing more efficacious and targeted formulations for the treatment of liver disorders.

Keywords: Liver, Hepatotoxicity, Hepatoprotection, chicory, Cichorium intybus

INTRODUCTION
The genus Cichorium (Asteraceae) consists of six species with major distribution areas in Europe and Asia1. Cichorium intybus L., commonly known as chicory is a erect, usually rough and more or less glandular herb. stems 0.3-0.9m, angled or grooved, branches tough, rigid spreading radical and lower leaves 7.5-15 cm, pinatifid, lobes toothed, pointing downwards upper leaves alternate2. The flowers blooms from May to the summer time. The colour of the flowers are deep sky-blue. It is a capitale flower and its diameter is about 3-4 cm, and has a brilliant bluish-purple (sometimes pink or white), radially symmetrical bloom. Flowers are singularly arranged along the length of a fibrous and rigid, dark-green stem. This wildflower has two types of leaves: large-dandelion-shaped leaves near the base of the stem and small lanceolate-to-oblong-shaped leaves along the length of the stem. Cichorium intybus is called as Hindubar, Indyba in arabic, Zral in baluchistan, Chicory in California, Bunk, Chicory in English, Kichora, Kikori in greek, Kasani in gujarathi, Kasni in hindi, Kasani in Persian, Gul, Hand in Punjabi, Kasni, Tsikorie, Kashini virai in tamil, Kasini vittulu in telugu, Kasani in urdu3. These various common or local names signifies the widespread use of this plant by different folkloric group. Historically, chicory was grown by the ancient Egyptians as a medicinal plant, coffee substitute, and vegetable crop and was occasionally used for animal forage. In the 1970s, it was discovered that the root of C. intybus contained up to 40% inulin, which has a negligible impact on blood sugar and thus is suitable for diabetics4. Cichorium intybus is cultivated for numerous applications and can be divided into four main varieties or cultigroups according to their use5,6: “industrial” or “root” chicory, predominantly cultivated in northwestern Europe, India, South Africa, and Chile, produces the taproot as a coffee substitute or for inulin extraction; “Brussels” or “witloof “ chicory is commonly cultivated around Europe as industrial chicory for etiolated buds (chicons) by forcing; “leaf “ chicory is used as fresh or cooked vegetables; and “forage” chicory, initially derived from wild chicory commonly found along roadsides and waste areas, has been used since the mid- 1970s to intensify herbage obtain ability in perennial pastures for livestock. The chicory plant is used in Indian medicine as a tonic, curative in acme, emmenagogue and alexiteric. Its various plant parts have beneficial role in treating liver diseases, enlargement of spleen, as bitter tonic effective in jaundice, liver enlargement etc. This review focuses on the various uses of this plant with specific reference to its hepatoprotective capacity, hepatotoxicity inducing agents, Mechanism of Hepatoprotection, various chemical constituents reported, scientific studies conducted on hepatoprotection in this plant in detail.

*Author for correspondence: E-mail: mnathur1@amity.edu
Table 1: Hepatoprotective Activity Of *Cichorium Intybus* Against Various Hepatotoxins.

<table>
<thead>
<tr>
<th>S.No</th>
<th>Plant part used</th>
<th>Extract</th>
<th>Hepatotoxic agent used</th>
<th>Dose</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Roots and root callus</td>
<td>Alcoholic extract</td>
<td>CCl₄</td>
<td>50 mg/Kg and 100 mg/Kg</td>
<td>Zafar R. et al 1998</td>
</tr>
<tr>
<td>2.</td>
<td>Seed</td>
<td>Alcohol extract</td>
<td>CCl₄</td>
<td>25 mg/Kg</td>
<td>Ahmed B. et al 2003</td>
</tr>
<tr>
<td>3.</td>
<td>Leaves</td>
<td>Hydroalcoholic extract</td>
<td>CCl₄</td>
<td>50 mg/Kg and 100 mg/Kg</td>
<td>Akram Jamshidzadeh et al 2006</td>
</tr>
<tr>
<td>4.</td>
<td>Root extract</td>
<td>Ethanol</td>
<td>CCl₄ and d-Galactosamine Thioacetamide</td>
<td>Pretreatment 800 mg/Kg/wt</td>
<td>H.Upur et al 2009.</td>
</tr>
<tr>
<td>6.</td>
<td>Leaves</td>
<td>Ethanol</td>
<td>CCl₄</td>
<td>200, 400, 500 mg/Kg wt.</td>
<td>2 ml of water-extractables per 0.2 ml of liver homogenates (3.2 ± 0.31 mg protein).</td>
</tr>
<tr>
<td>7.</td>
<td>Liv 52 Formulation</td>
<td>Ethanol</td>
<td>CCl₄</td>
<td>250 mg/Kg and 500 mg/Kg</td>
<td>A.H. Atta et al 2010.</td>
</tr>
<tr>
<td>8.</td>
<td>Whole plant</td>
<td>Ethanol</td>
<td>CCl₄</td>
<td>300 mg/Kg</td>
<td>Joung-Hoon Kim et al 2002</td>
</tr>
<tr>
<td>9.</td>
<td>leaves</td>
<td>Methanol extract</td>
<td>CCl₄</td>
<td>300 mg/Kg</td>
<td>A.H. Gilani et al 1998.</td>
</tr>
<tr>
<td>10.</td>
<td>Whole plant</td>
<td>Ethanol extract</td>
<td>CCl₄</td>
<td>2 ml of syrup</td>
<td>Original study by SV Dange.</td>
</tr>
<tr>
<td>11.</td>
<td>Esculatin, a phenolic compound</td>
<td>Methanol extract</td>
<td>CCl₄</td>
<td>2 ml of syrup</td>
<td>Darbar S. et al 2009</td>
</tr>
<tr>
<td>13.</td>
<td>Poly herbal formulation Liv 52, Livokin</td>
<td>CCl₄</td>
<td>2.6 ml/Kg Wt, 5.6 ml/Kg Wt</td>
<td>Different doses for children and adults</td>
<td>C Girish et al 2009.</td>
</tr>
<tr>
<td>14.</td>
<td>Liv 52(Seeds of Cichorium intybus 65 mg/tablet)</td>
<td>CCl₄</td>
<td>0.5 ml of syrup</td>
<td>Different doses for children and adults</td>
<td>Goel. A. et al 1991</td>
</tr>
<tr>
<td>15.</td>
<td>Livina</td>
<td>A Poly herbal Liquid Formulation syrup</td>
<td>Ethanol</td>
<td>2 ml of syrup</td>
<td>Different doses for children and adults</td>
</tr>
<tr>
<td>16.</td>
<td>Liv 52</td>
<td>Antitubercular drugs</td>
<td>CCl₄</td>
<td>Different doses for children and adults</td>
<td>Original study by SV Dange.</td>
</tr>
<tr>
<td>17.</td>
<td>Liv 52(Seeds of Cichorium intybus 65 mg/tablet)</td>
<td>Antitubercular drugs</td>
<td>CCl₄</td>
<td>Different doses for children and adults</td>
<td>Original study by SV Dange.</td>
</tr>
<tr>
<td>18.</td>
<td>Roots</td>
<td>Aqueous extract syrup</td>
<td>Oxytetracycline</td>
<td>Different doses for children and adults</td>
<td>Eman G. Helal et al 2011</td>
</tr>
<tr>
<td>19.</td>
<td>Liv 100</td>
<td>Antitubercular drugs</td>
<td>CCl₄</td>
<td>75 mg/Kg by gastric tube</td>
<td>S.D. Saraswat et al 1998.</td>
</tr>
</tbody>
</table>
Uses: The chicory plant is used in Indian Medicine in fevers, vomiting, diarrhoea and enlargement of spleen. The seeds are reported to be carminative and cordial, and brain tonic and useful in headache and asthma. A decoction of seeds is used in obstructed menstruation and for checking bilious vomiting. The root is used as a carminative, bitter tonic. It is found to be effective in jaundice, liver enlargement gout and rheumatic complaints. The root is reported to be stomachic and diuretic. Roasted roots add a better mellow taste to coffee and tea or used as a substitute for coffee. Added to coffee, it counteracts with caffeine and helps in digestion. A tea made from chicory is beneficial in upset stomach. In South Africa, although it is considered as a widespread weed, leaves, stems and roots are made into tea for jaundice and chicory syrup is used as a tonic and purifying medicine for infants. In Turkey, an ointment is made from the leaves for wound healing. The ethnomedical studies have reported the use of leaves in curing jaundice, liver disorders, vomiting, loose motion, fever and pleurisy. Leaves and roots are used to disperse the swelling of joints.

In recent years many researchers have examined the effects of C. intybus roots and seeds on hepatotoxic damages, those of its leaf on cardiac injuries, diabetic and hyperlipidemic disorders, experimental data also reveals its use as anti-fungal, post coital contraceptive, and anti cancer. This review focuses mainly on the hepatoprotective ability of Cichorium intybus against various hepatotoxins.

Various Hepatotoxins and their Mechanism of Induction: Liver is a vital organ and plays a major role in the metabolism and excretion of xenobiotics from the body. Liver injury or liver dysfunction is the major health problem that challenges not only the healthcare professionals but also the pharmaceutical industry and drug regulatory agencies. Chemicals that cause liver injury are called as hepatotoxins, it is reported that more than 900 drugs are responsible for causing the liver injury and it is the most common reason for a drug to be withdrawn from the market. Many chemicals have been known to induce hepatotoxicity, like Carbontetrachloride (CCl), galactosamine, D-Galactosamine lipopolysaccharide (GalN/LPS), Thioacetamide, antituberular drugs, paracetamol, arsenic etc are used to induce experimental hepatotoxicity in laboratory animals. Carbontetrachloride (CCl)- Carbontetrachloride is metabolized in the endoplasmic reticulum and mitochondria by cytochrome P-450 with the formation of an intermediate CClO, which is a reactive oxidative free radical, which initiates lipid peroxidation.

Galactosamine- Galactosamine produces diffuse type of liver injury simulating viral hepatitis. The intensive inflammatory reaction of perportal areas, the proliferation of cholangiocytes, the appearance of uni- and multicellular necrosis and of Councilman bodies and the lack of fatty infiltration being the most characteristic features. D-Galactosamine-1-phosphate and UDP-galactosamine were identified as the predominant early metabolites of galactosamine in rat liver. The conversion of galactosamine-1-phosphate to UDP-galactosamine is shown to be catalyzed by UDP-glucose: α-d-galactose-1-phosphate uridylytransferase. Galactosamine treated livers show a high level of this compound explaining in parts the low affinity of this enzyme for galactosamine-1-phosphate. Due to this galactosamine-1-phosphate accumulation is enhanced by the strongly reduced levels of UDPG. Galactosamine-1-phosphate inhibits the UDPG-pyrophosphorylase reaction, the type of inhibition being mainly competitive with glucose-1-phosphate. In the presence of the concentrations of galactosamine-1-phosphate and glucose-1-phosphate found in vivo after galactosamine treatment, UDPG-pyrophosphorylases from rat and calf liver are strongly inhibited in vitro. By these mechanisms galactosamine-1-phosphate counteracts its own conversion to UDP-galactosamine. The influence of the strongly diminished UDPG levels on the UDPG-linked synthesis of glycogen, heteropolysaccharides and glucuronides as well as the trapping of uridine phosphates by formation of UDP-hexosamines may play an important role in the induction of galactosamine hepatitis. Galactosamine reduces the number of viable hepatocytes as well as rate of oxygen consumption, Dose of D Galactosamine is 400 mg/kg, intraperitoneally.

Thioacetamide: Thioacetamide is a potent hepatotoxican that is metabolized by Cytp450 enzymes present in the liver microsomes and is converted to a toxic reactive intermediate called thioacetamide S-oxide due to oxidation process. Thioacetamide S-oxide induces oxidative stress in the liver cells. This intermediate is responsible for the changes in cell permeability, increase intracellular concentration of Ca++, increase in nuclear volume and enlargement of nucleoli and also inhibiting mitochondrial activity which leads to cell death, severely affecting those cells which are located in the perivenous acinar region. Moreover, thioacetamide causes the inhibition of mitochondria and eventually liver necrosis. Damage of liver cell is reflected by an increase in the levels of hepato specific enzymes, these are cytoplasmic in section and are released in to circulation after cellular damage.

Alcohol: Alcohol consumption causes various liver abnormalities like fatty infiltration, hepatitis and cirrhosis. Increased lipid peroxidation during microosomal metabolism of ethanol is responsible for Hepatitis and cirrhosis. Fat infiltration is a reversible phenomenon that occurs when alcohol replaces fatty acids in the mitochondria. Alcohol induces in vivo changes in membrane lipid composition and fluidity, which may eventually affect cellular functions. The underlying mechanisms responsible for effects of alcohol is associated with increase in hepatic lipid peroxidation which leads to alteration in membrane phospholipid composition. Enhanced generation of oxy free radicals during its oxidation in liver causes the effect of ethanol. The peroxidation of membrane lipids results in loss of membrane structure and integrity. These results in elevated levels of γ-glutamyl transpeptidase, a membrane bound enzyme in serum. Ethanol inhibits glutathione peroxidase, decreases the activity of catalase, superoxide...
Paracetamol: Paracetamol, a widely used analgesic and antipyretic drug, produces acute liver damage in high doses. Paracetamol administration causes necrosis of the centrilobular hepatocytes characterized by nuclear pyknosis and eosinophilic cytoplasm followed by large excessive hepatic lesion. Damage to the liver, or hepatotoxicity, results not from paracetamol itself, but from one of its metabolites, N-acetyl-p-benzoquinoneimine (NAPQI) (also known as N-acetylcytidimidoquinone). NAPQI depletes the liver’s natural antioxidant glutathione and directly damages cells in the liver, leading to liver failure.

Antitubercular drugs: Tuberculosis is one of the most common diseases in India and has attained epidemic proportions. Tuberculosis and liver are related in many ways. Liver disease can occur due to hepatic tuberculosis or by the treatment with various antitubercular drugs. Tuberculosis per se can affect liver in three forms, the most common form is the diffuse hepatic involvement, seen along with pulmonary or miliary tuberculosis. The second is granulomatous hepatitis and the third, much rarer form presents as focal/local tuberculosis or abscess. Antitubercular drugs pose a major problem since they are required to be administered over a prolonged period of time. Adverse effects of antitubercular therapy are sometimes potentiated by multiple drug regimens. Thus, though INH, rifampicin and pyrazinamide each in itself are potentially hepatotoxic, when given in combination, their toxic effect is further enhanced. INH is metabolized to monoacetyl hydrazine, which is further metabolized to a toxic product by cytochrome P450 leading to hepatotoxicity. Patients on concurrent rifampicin therapy have an increased incidence of hepatitis. This has been postulated due to rifampicin-induced cytochrome P450 enzyme-induction, causing an increased production of the toxic metabolites from acetyl hydrazine (AcHz). Rifampicin also increases the metabolism of INH to isonicotinic acid and hydrazine, both of which are hepatotoxic. Rifampicin shortens plasma half life of AcHz (metabolite of INH) and AcHz is quickly converted to its active metabolites, thus by increasing the oxidative elimination rate of AcHz, there is an increase in the incidence of liver necrosis caused by INH and rifampicin in combination. Rifampicin induces hydrolysis pathway of INH metabolism into the hepatotoxic metabolite hydrazine. It was also observed that some pharmacokinetic interactions also exist between rifampicin and pyrazinamide in tuberculosi patients, when these drugs are administered concomitantly. Pyrazinamide decrease the blood level of rifampicin by decreasing its bioavailability and increasing its clearance. Pyrazinamide, in combination with INH and rifampicin, appears to be associated with an increased incidence of hepatotoxicity.

Scientific Studies Conducted on Hepatoprotection: Liver toxicity in experimental animals can be induced by Carbonetetrachloride (CCL4), d-Galactosamine, Paracetamol, alcohol, Thioacetamide, antitubercular drugs, etc. Table 1 enlists some of the scientific studies conducted on Cichorium intybus, which illustrates its role in hepatoprotection against various hepatotoxins.

CONCLUSION
Herbal drugs as hepatoprotective agents provide safety, efficacy, cost effectiveness besides providing protection to the damaged liver from various agents. Allopathic medication alone is not as effective and preferred as compared to the phytotherapeutic approach of modern medication which is more effective, safe and less expensive. Various studies reported on Cichorium intybus and its presence in various existing formulations proves its role in hepatoprotection. Further, its various parts like stem, leaves, roots, bark etc can be explored for better hepatoprotection alone or in combination with other plants for developing more efficacious and targeted formulations for the treatment of liver disorders.

REFERENCES
1. H. P. Bais and G. A. Ravishankar, “Cichorium intybus L.—cultivation, processing, utility, value addition and biotechnology, with an emphasis on

IJPRR, Vol 6, Issue 3, September-November 2014, 499-505

