Invitro Antimicrobial Activity, DNA Sequencing and Phytochemical Screening of A Medicinal Plant - Ruellia patula Jacq

1Department of Biotechnology, PRIST University, Vallam, Thanjavur.
2Department of Chemical Engineering, National Institute of Technology, Calicut
3Department of Research and Development, PRIST University, Thanjavur.

Available Online: 1st September 2014

ABSTRACT
RuelliapatulaJacq (syn: Dipteracanthus patalus) belongs to the family Acanthaceae, has numerous medicinal properties but is not exploited much in modern medicine. Invitro antimicrobial activity of the RuelliapatulaJacq leaves extracted with ethanol, Methanol and Acetone was checked for Bacillus subtilis, Escherichia coli and Aspergillus niger by disc diffusion method. Ethanol was found to be the better solvent that its extract showed more activity against Aspergillus niger, Escherichia coli and Bacillus subtilis respectively. Preliminary phytochemical screening of the ethanolic and methanolic extracts showed positive results for alkaloids, steroids, phenols, flavonoids, tannins and terpenoids. Genomic DNA was extracted from RuelliapatulaJacq leaves using the standard Cetyl Trimethyl Ammonium Bromide extraction method. The DNA extracted responded well during PCR amplification and RAPD analysis with three gene specific primers and five random Medicinal aromatic plant primers respectively. Chromatographic fingerprinting of the ethanolic extract of the plant leaves was analyzed for compounds present in the sample using analytical type HPLC using a C-13 Column and a UV- detector of the RuelliapatulaJacq for the detection of the chemical constituents in the plant. Analytical type chromatogram revealed the presence of 8 compounds in the extract under scanning at 205 nm. The preparative type HPLC chromatogram revealed the presence of 2 major compounds in the extract. The collected fractions were subjected to FT-IR spectroscopy and UV-Visible spectrum analysis. FT-IR Spectrum studies on RuelliapatulaJacq ethanolic extract showed the possibility of harbouring secondary metabolites with higher pharmaceutical value.

Key words: RuelliapatulaJacq, PCR, RAPD, Phytochemical analysis, HPLC, FTIR spectroscopy.

INTRODUCTION
Medicinal plants contain large varieties of chemical substances which possess important therapeutic properties that can be utilized in the treatment of human diseases (1). Thus, there is need to search for new and more potent antimicrobial compounds of natural origin to combat the activities of these pathogens which is the basis for this study. Though there are methods in the identification of phytochemicals from plant family Acanthaceae, it is limited. Pharmacological studies of RuelliapatulaJacq indicated its cardiotonic (2), wound healing (3), antiulcer and antioxidant (4) activities. Spectroscopic analysis of Ruellia sp. (5) results three new flavonoid glycosides, demethoxycentaureidin 7-O-b-D-galacturonopyranoside, pectolinariigenin 7-O-a-L-rhamnopyranosyl-(1_4)_b-D-glucopyranoside and 7-O-a -L-rhamnopyranosyl-(1_4)_b-D-glucuronopyranoside, a new megastigmae glucoside, byzantionoside B 6_0-sulfate, and a new (Z)-hex-3-en-1-ol Ob-D-xylopyranosyl-(1_2)_b-D-glucopyranoside, were isolated from leaves of Ruellia patula jacq together with 12 known compounds. The hepatoprotective activity of methanolic Extract of DP seems to be related to its antioxidant activity possibly through free radicals scavenging mechanism by activating antioxidant enzymes (6). Natural products are frequently isolated following the evaluation of a relatively crude extract in a biological assay in order to fully characterize the active entity. The biologically active entity is often present only as minor component in the extract and the resolving power of HPLC is ideally suited to the rapid processing of such multi component samples on both an analytical and preparative scale. In this study we are trying to identify the phytochemical compounds present in the plant leaves by basic analytical and preparative HPLC, spectroscopic analysis, PCR and RAPD.

MATERIALS AND METHODS
Invitro Antimicrobial Activity and preliminary phytochemical analysis: The collected leaves were cleaned and shade dried. The dried plants were pulverized by an electrical blender and passed through the 20 mesh sieve. The powdered dried leaves (20g) were extracted with ethanol, acetone and methanol by using Soxhlet apparatus. The extraction was carried out for 24 hours at room temperature. The extracts were filtered and concentrated at room temperature. After the completion of solvent evaporation, each of these solvent extract were

*Author for correspondence: E-mail: swaranya2218@gmail.com
one of inhibition against cancer. The nucleic acid CR analysis was made by HPLC preparative analysis. A sample was sequenced using AB primer with modified 18S rRNA (5’-CTATCGCCGC-3’), CAC ATC CAA GG, AAG ATT TCT GC-3’). Specific primers were Amplified TGTCTCAGG R: TCC ACC GGC ATT GTA ACC. The extracted DNA was subjected to PCR analysis with 20ng of DNA, randomly selected 5′-3′ MAP primers (5′-3′ MAP 02- GTCTACTCG , MAP 08 - CTATCGCCGC , MAP 12-GTGAATGAC, MAP 17 – TTGTCTCAGG, MAP 18 -CATCCCGAAC and gene specific primers matK (F- 5′GCC RTY CAT CTG GAA ATC TTG GTT C3′, R-5′GCT RTR ARA GTG AGA AAG ATT TCT GC3′) , 18S rRNA (F-AMG GGC ACE ATC CAA GG, R-CCG AAG GCC ACA ACA ATA GG), rbcL (F- TGT GCA GCA TTC CGA GTA AC, R-AAG TCA ACC GGC AAG ACA TT) and also with modified matK, 18S rRNA, rbcL primers. Amplified products were sequenced using AB-prism capillary DNA sequencer. The DNA sequence obtained from sequencing was counter checked by employing NCBI-BLAST search.

Table 1: Modified Primers for the amplification of Specific plant gene

<table>
<thead>
<tr>
<th>Gene</th>
<th>F/R</th>
<th>Primer sequence (5’-3’)</th>
<th>bases</th>
<th>Tm (°C)</th>
<th>GC%</th>
<th>Ta (°C)</th>
<th>Amplicon (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified matK</td>
<td>F</td>
<td>CAT CTG GAA ATC TTG GTT C</td>
<td>19</td>
<td>53</td>
<td>42</td>
<td>50</td>
<td>777</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>R AT AAT GAG AAA GAT TTC TGG</td>
<td>21</td>
<td>53.4</td>
<td>33</td>
<td>777</td>
<td></td>
</tr>
<tr>
<td>Modified 18S rRNA</td>
<td>F</td>
<td>AAC GGC TAC CAC ATC CAA</td>
<td>18</td>
<td>53.8</td>
<td>50</td>
<td>50</td>
<td>483</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>CCG AAG GCC AAC ACA ATA</td>
<td>18</td>
<td>53.8</td>
<td>50</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td>Modified rbcL</td>
<td>F</td>
<td>TTT GCA GCA TTC CGA GTA</td>
<td>18</td>
<td>53.8</td>
<td>50</td>
<td>483</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>TCC ACC GGC AAG ACA TT</td>
<td>17</td>
<td>52.4</td>
<td>53</td>
<td>483</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Invitro antimicrobial activity of leaf extracts of Ruellia patula Jacq

<table>
<thead>
<tr>
<th>Zone of inhibition in mm</th>
<th>Escherichia coli</th>
<th>Bacillus subtilis</th>
<th>Aspergillus niger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanolic extract</td>
<td>27</td>
<td>20</td>
<td>33</td>
</tr>
<tr>
<td>Methanolic extract</td>
<td>20</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>Acetone extract</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

weighed and preserved at 5°C in airtight bottles until further use. Disc diffusion method was used to determine the zone of inhibition against Aspergillus niger (MTCC 1344), Bacillus subtilis (MTCC 441) and Escherichia coli (MTCC 433) by the Ruellia patula leaf extracts with Aminoxill as control. The test for alkaloids, steroids, glycosides, phenols, flavonoids, tanins and terpenoids in Ruellia patula were performed by the standard methods of Harborne, 1973.

Genomic DNA extraction, quantification, PCR-RAPD analysis: Sample extracted with ethanol was used for further analysis. Genomic DNA was extracted from the plant leaves using the standard CTAB method (8). The quantity and purity of the DNA present in the sample were checked by spectrophotometry. The nucleic acid show absorption maxima around 260 nm if the DNA sample is pure without significant contamination from proteins and organic solvents whereas proteins shows peak absorbance at 280 nm. The absorbance is recorded at both wavelength and purity is indicated by the ratio OD260/OD280. If the value lies between 1.8 and 2.0, the DNA preparation is pure and free from proteins. If the sample is contaminated with protein the value is below 1.8 and if it is RNA contaminated the value lies above 2.0 (9).

The extracted DNA was subjected to PCR analysis with 20ng of DNA, randomly selected MAP primers (5′-3′ MAP 02- GTCTACTCG , MAP 08 - CTATCGCCGC , MAP 12-GTGAATGAC, MAP 17 – TTGTCTCAGG, MAP 18 -CATCCCGAAC and gene specific primers matK (F- 5′GCC RTY CAT CTG GAA ATC TTG GTT C3′, R-5′GCT RTR ARA GTG AGA AAG ATT TCT GC3′) , 18S rRNA (F-AMG GGC ACE ATC CAA GG, R-CCG AAG GCC ACA ACA ATA GG), rbcL (F- TGT GCA GCA TTC CGA GTA AC, R-AAG TCA ACC GGC AAG ACA TT) and also with modified matK, 18S rRNA, rbcL primers. Amplified products were sequenced using AB-prism capillary DNA sequencer. The DNA sequence obtained from sequencing analysis was counter checked by employing NCBI-BLAST search.

HPLC Analytical and Preparative Analysis: Plant sample crude extracted with ethanol is used for the analysis. The HPLC analytical system is UFLC + SHIMADZU LC-8A make. The column used was Luna 10u, 18 Silica 100 and Size->250X10.00mm 10 micron. Wavelength was 205 nm and injection volume 20 µl with flow rate 1.0 ml/min. 100 % Methanol was used as mobile phase. The pressure was maintained at the minimum of 42kg f/cm² and maximum of 300 kgf/cm². Ethanolic extract was used for the preparative HPLC analysis with the same conditions as in analytical HPLC. Two fractions were collected from the system in separate tubes and the collected fractions were subjected to FT-IR and UV spectrum analysis.

UV and FT-IR Spectroscopic analysis: The crude extract and extracts obtained from HPLC preparative analysis were examined under visible and UV light for proximate analysis. The sample is diluted to 1:10 with different solvent. The extracts were scanned in the wave length ranging from 190 – 1100 nm using Perkin Elmer Spectrophotometer and characteristics peaks were determined.

Fig.1: Genomic DNA extracted from Ruellia patula Jacq leaves

Genomic DNA of Ruellia patula: Lane 2 - Agarose gel electrophoresis of undigested genomic DNA of the plant where the 3 µl of genomic DNA was loaded from sample. Lane 1-3 Empty wells.
detected. FT-IR analysis was performed using PerkinElmer Spectrophotometer system, which was used to detect the characteristic peaks and functional groups present in the sample. The peak values of the UV and FT-IR were recorded.

RESULTS AND DISCUSSION

DNA sequence from the leaves of *Ruellia patula Jacq* showed higher antimicrobial activity against *A.niger* rather than *E.coli* and *B.Subtilis* with a zone of inhibition of 33 mm. Preliminary phytochemical screening of ethanolic and methanolic extracts showed positive results for alkaloids, steroids, phenols, flavonoids, tannins, terpenoids, proteins, and amino acids. OD 260/OD 280 ratio was about 1.65 indicating the level of purity of DNA.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Ethanolic extract</th>
<th>Methanolic extract</th>
<th>Acetone extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloids</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Steroid</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glycosides</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Phenols</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavanoids</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Tannin</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Proteins</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Preliminary phytochemical screening of leaf extracts of *Ruellia patula Jacq*

Fig.2: Quantification of DNA isolated from *Ruellia patula Jacq* Absorption maxima at 260 nm showing pure DNA.

In this study the ethanolic extract of leaves of *Ruellia patula Jacq* showed higher antimicrobial activity against *A.niger* rather than *E.coli* and *B.Subtilis* with a zone of inhibition of 33 mm. Preliminary phytochemical screening of ethanolic and methanolic extracts showed positive results for alkaloids, steroids, phenols,
flavonoids, tannins and terpenoids. The quality of DNA extracted was analysed by UV spectrophotometer at 260 nm and found to be pure without much contamination. The quantity of the DNA was estimated to be 13 µg/ml. The amplified DNA samples were subjected to PCR-RAPD analysis with different primers MAP (2, 8, 13, 17and 18). In RAPD analysis only three primers (2, 13 & 18) responded well and two (8, 17) were unable to amplify any partial genes of the target plant DNA. This shows that the primers sequences MAP 2, 13 & 18 complementary sequences were available in more than two locations in the target genome against the MAP 8 & 17 they failed to amplify and resulted with no products. Specific gene locus based primers were designed for the three plant DNA finger printing genes such as 18s rRNA, matK, rbcL genes. Primers were designed with few modifications of bases at 5’ and 3’ ends. Three partial genes were analyzed and the amplicons were checked on the agarose gel (1.5 % w/v). PCR products were resolved distinctly at various size 546 bp, 777 bp, 483 bp. Amplified products were sequenced and counter checked by NCBI-BLAST search. The HPLC analytical chromatogram revealed the presence of 8 compounds in the extract under 205 nm. Among the constituents the compounds at 2.647, 3.081 were found to be the major compounds around 38.76% and 36.40% among the total constituents at this detection nanometer. The UV profile of ethanol ic extract of *RuelliapatulaJacq* chosen wavelength of 200 to 350nm and the profile showed peaks at 205 and 331 respectively and another chosen wavelength 400-700 nm showed the peak at 421 and 658. The HPLC preparative chromatogram revealed the presence of 2 major compounds in the extract under...
205 nm. The compounds at Retention time 2.651, 2.828 were the major compounds which are around 31.037 % and 58.805 % among the total constituents at this detection nanometer. Two fractions were collected from this fraction and subjected to FT-IR and UV spectrum analysis. In the FT-IR spectrums the wave number 3548 cm⁻¹ corresponds to O-H stretch of alkenes. The peak at 3380 cm⁻¹ corresponds to O-H stretch alcohols (or) phenols. The peak at 2815.16 cm⁻¹ corresponds to –CHO aldehyde or [N-CH₃]. The peak at 2729 cm⁻¹ corresponds to –CHO (aldehyde). The assignment 2101 cm⁻¹ corresponds to –C = CH and the peaks at 1629 cm⁻¹ corresponds C=C – C=O (or) –O-NO₂. The bands observed at 1350.12 cm⁻¹ and 670 cm⁻¹ corresponding C-F (alkyl) (C-Cl) (C-Br) --> alkyl halides, esters and alkenes. The plant secondary metabolites such as Terpenoids, Flavanoids, Alkaloids and Steroids having functional group of alcohols, phenols, aldehyde, ketone, alkyl halides, alkenes, carboxylic acids, Aliphatic amines. FT-IR spectrum studies on *Ruellia patula* Jacq crude ethanolic extract revealed that the possibility of harbouring specific secondary metabolites with higher pharmaceutical value. But this provisional data has to be confirmed with the additional characterization of the fraction using Nuclear Magnetic Resonance, Liquid Chromatography-Mass Spectroscopy and X-Ray Diffraction analysis.

IMPORTANT ABBREVIATIONS

DP- *Dipteracanthus patulus* Jacq
CTAB- Cetyl Trimethyl Ammonium Bromide
RAPD- Random Amplification of Polymorphic DNA
HPLC- High Performance Liquid Chromatography
FTIR – Fourier Transform Infrared Spectrometry
MAP- Medicinal Aromatic Plants
Rt- Retention time
NCBI-BLAST- National Center for Biotechnology Information - Basic Local Alignment Search Tool.
REFERENCES

11. E. Nalini and N. Jawali and S.G. Bhagwat “A simple method for isolation of DNA from plants suitable for long term storage and DNA marker analysis” Molecular Biology and Agriculture Division; Bhabha Atomic Research Centre, Issue No.249

