Evaluation of Anticancer Activity Using Hexanic Extract of Vitex trifolia on Two Different Cancer Cell Lines

Vasanthi V. J.1, Radhjeyalakshmi R.2, Nasrin F.3

1Associate Professor, Department of Biotechnology, Vels University, Chennai -117
2Assistant Professor, Dept of Plant Pathology, TNAU, Coimbatore-641003.
3Research Scholar, Department of Biotechnology, Vels University, Chennai -117

Available Online: 1st September 2014

ABSTRACT
The present study was designed to evaluate cytotoxicity of n-Hexane fractions of Vitex trifolia in two cancer cell lines viz., Hep G2 and HeLa. Different concentrations such as 20, 40, 80, 160, 320 and 640 μg/ml of extract were tested for cytotoxicity using MTT Assay. Based on our previous research findings on qualitative and quantitative analysis of phytochemicals in Vitex trifolia, it was evident that phytochemicals in Vitex trifolia had strong antibacterial activity. Hence in the current study anticancer activity was tested using Vitex trifolia extracts. Concentration required for a 50% inhibition of viability (IC50) was determined graphically. MTT Assays showed that hexanic extract of Vitex trifolia were highly effective against both Hep G2 and HeLa cancer cell lines at a concentration of 80 μg/ml. This conclude that Vitex trifolia can be potent drug for cancer treatment and an alternative medicine.

Key words: Vitex trifolia, MTT Assay, Cytotoxicity, (Hep G2), (HeLa), Vero cell line, cell viability

INTRODUCTION
Cancer is a dreadful disease, which features uncontrolled cellular growth, local tissue invasion and metastasis and cause several deaths per year. In case of modern therapy there are serious side effects due to chemotherapy, surgical and radiations. Hence current pharmacological research is focused on Indian traditional system of medicine, which are natural and safe. Use of herbs has been authorized as alternative form of medicine with less toxicity and safe for patients. The phytochemicals such as alkaloids, flavonoids and others play a major role in fight against cancer cells8. Vitex trifolia is an ethno medicinal plant belonging to the family lamiaceae6. The leaves are trifoliolate and treated for inflammation and pain, leucoderma, bronchitis fever, rheumatism, contusions, to improve memory, promote growth of hair, headache, and in many skin diseases and as insect and rodent repellent. The dried leaves are burned to deter Mosquitoes8. Vitex is widely used in Chinese folk medicine9 and ethanolic extracts of flowers of Vitex trifolia Linn were effective on CCL4 induced hepatic injury in rats16. Further wound healing potency of Vitex trifolia L. and Vitex altissima L. have been reported. Several others reported for its antioxidant potential5,11,21 and antihelminthic property17. Anticancer studies against Hep-2, MCF-7 and Vero cell lines using methanol and n- hexane fractions on Ononis hirta showed better inhibitions in cancer cell lines25. In the present study two cancer cell lines were selected. HeLa, a human immortal cell line derived from cervical cancer cells taken from Henrietta Lacks, in 1951 used in this research31. Hep G2, a perpetual cell line which was derived from the liver tissue of a Caucasian American male with a well-differentiated hepatocellular carcinoma32. Vitex has been reported even for its anti-HIV properties18,13 In vitro studies on cytotoxicity were conducted by treating cells with Vitex toxic extract which may cause cell damage14. Here cell integrity is an important factor and to assess we had to measure cell viability in two cancer cell lines viz., Hep G2 and HeLa.

MATERIALS AND METHODS
Collection and Extraction of Sample: Vitex trifolia leaves are trifoliolate palmately compound, with reticulate venation were collected from National Siddha Institute, Tambaram, Chennai. Vitex leaves were cleaned and shade dried for a week and fresh course powders were subjected to maceration by petroleum ether to remove fatty materials and then extracted with methanol, hexane and ethanol using soxhlet apparatus. All three fractions of the extract was then filtered and concentrated to dryness in a rotary vacuum evaporator under reduced pressure and stored in dessicatores. n-Hexane fractions were selected for further studies of cytotoxicity. In vitro assay for cytotoxicity (MTT ASSAY) of Vitex trifolia. Cell line and culture: In this experiment three different cell lines viz., two cancer cell lines HeLa (Immortal cell line),

*Author for correspondence: E-mail: dvvasanthi0111@gmail.com
HepG2 (hepato cellular liver carcinoma) and Vero normal cell line (Control) were used to test anticancer activity of Vitex trifolia. All the cell lines were obtained from National Centre for Cell Sciences, Pune (NCCS). The cells were maintained separately in Minimal Essential Media supplemented with 10% FBS, penicillin (100 U/ml), and streptomycin (100 μg/ml) in a humidified atmosphere of 50 μg/ml CO2 at 37 °C.

Reagents: MEM was purchased from Hi Media Laboratories. Fetal bovine serum (FBS) was purchased from Cistron laboratories. Trypsin, methylthiazolyl diphenyl- tetrazolium bromide (MTT), and Dimethyl sulfoxide (DMSO) were purchased from (Sisco research laboratory chemicals Mumbai). All other chemicals and reagents were obtained from Sigma Aldrich Mumbai.

In vitro assay for cytotoxicity (MTT assay) using Vitex trifolia

The Anticancer activity was determined by MTT assay. The assay detects the reduction of MTT by mitochondrial dehydrogenase to blue formazan product, which reflects the normal function of mitochondria and cell viability. Cells (1 x 105/well) were plated in 1ml of medium/well in 24-well plates (Costar Corning, Rochester, NY). After 48 hours incubation the cell reaches the confluence. Then cells were incubated in the presence of various concentrations of the samples in 0.1% DMSO for 48h at 37°C. After removal of the sample solution and washing with phosphate-buffered saline (pH 7.4), 200µl/well (5mg/ml) of 0.5% 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl--tetrazolium bromide cells (MTT) solution was added. After 4h incubation, 0.04M HCl/isopropanol were added. Different concentrations of the hexanic extract (1:2 to 1:32 dilutions - 20 μg to 640 μg) prepared from the diluted stock (1mg /ml), and the assay was performed in HeLa and Hep G2 cells in tetrads. Cell Control containing drug free medium and neat drug controls were included. After 3 days of incubation at 37°C under 5% CO2, the absorbance was
determined by spectrophotometer. The concentration of drugs showing complete cytotoxic effect was recorded. Viable cells were determined by the absorbance at 570nm. Measurements were performed and the concentration required for a 50% inhibition of viability (IC50) was determined graphically. The Minimum concentration nontoxic in Vero but completely inhibiting the cancer cells (HeLa or Hep G2) is considered as the “effective drug concentration”.The effect of the samples on the proliferation of cell lines HeLa and Hep G2 were expressed as the percent cell viability, using the following formula: Percent cell viability = A570 of Control cells - A570 of treated cells / A570 of control cells × 100. Graphs are plotted using the per centage of Cell Viability at Y-axis and concentration of the sample in X-axis. Cell control and sample control is included in each assay to compare the full cell viability in cytotoxicity activity assessments.

RESULTS AND DISCUSSION
The present study suggests high toxicity of Vitex trifolia against two cancer cell lines viz., Hep G2 and HeLa. MTT Assays showed inhibition at a concentration of 80 μg/ml in both Hep G2 (Fig. 1a, 1b) and HeLa (Fig. 1c, 1d). Anticancer activity more than 50 percent was found to be significant; Cell counting and cell viability tests confirmed anticancer activity in both cell lines by Vitex trifolia. Concentration required for a 50% inhibition of viability (IC50) was determined graphically (Fig. 2).

In the present study, Vitex extract were effective against both cancer cell lines. This is in support with the study on V. trifolia inhibiting proliferation of mammalian cancer cells8 and another report which stated Vitex negundo to be cytotoxic to human breast cancer cells (MCF-7)23. Further observations on IC50 values of n-hexane fraction of Ononis hirta in a study conducted in Jordan recorded 72.06 μg/ml for MCF-7 and 90.30 μg/ml for Hep223. This selectivity was due to the sensitivity of the cell line to the active compounds in the extract or to tissue specific response25. Similarly ethanolic extract of Vitex negundo showed cytotoxicity to Hep G2 cells in a dose and time-dependent manner23. In the present study n- hexanic fractions of Vitex were cytotoxic to liver and cervical cancer cell lines in accordance to the above mentioned work. Antiproliferative activities of plant extracts against human cancer cell lines is novel and may be strongly correlated with plants used against a wide variety of afflictions.

Our previous work on qualitative and quantitative analysis of phytochemicals revealed that phytochemicals like alkaloids, flavonoids and other phenols in Vitex trifolia to be a potent antibacterial agent13,21,22. Further anticancer activity of total flavonoids and alkaloids isolated from different plants were reported earlier30. Presence of flavonoids and terpenoids in active plants and alkaloids in Ononis hirta and Inula viscosa extracts exerted antiproliferative activity by inducing apoptosis in cancer cell lines7,15,25. The association between flavonoids and reduced cancer risk has been reported in two different studies that showed a decrease in cancer risk with consumption of vegetables and fruits rich with flavonoids28,15. Our previous study on Vitex phytochemical screening showed the presence of flavonoids13 and also in a similar study at Jordan on active Onis plant extracts25. Numerous groups with antitumor properties are plant derived natural products including alkaloids, phenylpropanoids, and terpenoids27,29,28.

CONCLUSION
We conclude that phytochemicals might have played a major role in anticancer activity. Hence Vitex trifolia can be recommended for cancer treatment especially for liver and cervical cancers. Further in-depth study need to be initiated for finding out bioactive compounds responsible for anticancer activity.

ACKNOWLEDGEMENTS
The first author would like to thank Dr. K. M. Vasudevan Pillai, CEO, Pillai’s Institute of Research (PRI), New Panvel, Maharashtra, for his constant guidance and support. Dept. of Biotechnology, Vels University, Chennai and National Siddha Institute, Tambaram Sanatorium, Chennai. National Centre for Cell Sciences, Pune (NCCS) for providing cell lines and Lifetek labs, Chennai.

REFERENCES


extract inhibits proliferation of human tumor cell line.