Diuretic & Anti-urolithic activity of Some Crude Extracts

Farah-Saeed1*, Mehjabeen2, Sikandar Khan Sherwani3, Noor-Jahan4, Mansoor Ahmad5

1Department of Pharmacognosy, Dow College of Pharmacy, Dow University of Health and Sciences, Karachi-Pakistan.
2Department of Pharmacology, Faculty of Pharmacy, Federal Urdu University of Arts Science and Technology, Karachi-Pakistan.
3Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan.
4Department of Pharmacology, Dow College of Pharmacy, Dow University of Health and Sciences, Karachi-Pakistan.
5Research Institute of Pharmaceutical Sciences, University of Karachi-Pakistan.

ABSTRACT
Eight crude extracts were evaluated for the presence of diuretic and anti-urolithiasis activity. Diuretic activity was carried out on rats and all extracts exhibited significant diuretic activity while A. montana (300 mg) and A. uva-ursi (300 mg) showed better diuretic activity i.e. 2.59±0.0033 and 2.65±0.0033 respectively in comparison to other test drugs, A. mellifica, C. virosa, D. purpurea, S. nigra, T. occidentalis, U. urens and control drug, Furosemide. Prominent anti-urolithic activity was shown by A. uva-ursi (95.7%), A. montana (80.2%), D. purpureae (91.2%) and C. viroso (91.2%) extracts while no anti-urolithic activity was found in the extracts of U. urens, A. mellifica, S. nigra and T. occidentalis. Our present study revealed the usefulness of crude extracts as safe and efficacious diuretic and anti-urolithic drugs.

Keywords: diuretic, anti-urolithiasis, herbal drugs, insect drug

INTRODUCTION
This research work is a part of our toxicity determination tests in herbal and insect crude drugs1,3. Here we are reporting the diuretic and anti-urolithic activity in crude extracts of seven medicinal plants (Arnica montana, Cicutia virosa, Digitalis purpurea, Sambucus nigra, Thuja occidentalis, Urtica urens, A. uva-ursi) and one insect drug (Apis mellifica).

MATERIAL & METHOD
Crude Extracts The seven plants and one insect crude extracts were obtained from authorized dealers of local market and stored in cool, dry place for further studies. All the chemicals and reagents were procured from Merck (Germany) and Sigma-Aldrich (USA).

Diuretic activity: The diuretic effect of crude extracts of A. mellifica, A. montana, C. virosa, D. purpurea, S. nigra, T. occidentalis, U. urens and U. ursi in mice were evaluated by the method of Umang et al. (2009). Aqueous extract of the above mentioned eight drugs were administered to experimental mice orally at doses of 300mg/kg. Furosemide (10 mg/kg) was used as a standard drug. The diuretic effects of the extracts were assessed by measuring urine volume in ml as compared with the standard and control 4.

Calcium oxalate crystallization inhibition activity (Anti-urolithiasis)
Experimental Protocol: The time dependent effects of turbidity changes in artificial urine on addition of 0.01M sodium oxalate solution alone and in combination with each of the following extracts, A. montana, A. mellifica, C.

*Author for Correspondence
a period of ten minutes at 620nm. For each experiment, six replicates were taken. The percentage of inhibition was calculated using the following formula:
\[
\% \text{ Inhibition} = \left(1 - \frac{S_i}{S_c}\right) \times 100
\]
Where; \(S_i\): slope of graph in the presence of inhibitor (Extract), \(S_c\): slope of graph without inhibitor (Control).

Table 1: Time-dependent synthesis and aggregation of Calcium oxalate crystals in synthetic urine

<table>
<thead>
<tr>
<th>Time (mins)</th>
<th>Number of Calcium oxalate crystals /mm³</th>
<th>Calcium oxalate aggregation/mm³</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>499</td>
<td>76</td>
<td>575</td>
</tr>
<tr>
<td>10</td>
<td>500</td>
<td>88</td>
<td>588</td>
</tr>
<tr>
<td>15</td>
<td>512</td>
<td>110</td>
<td>622</td>
</tr>
<tr>
<td>20</td>
<td>542</td>
<td>100</td>
<td>642</td>
</tr>
<tr>
<td>25</td>
<td>577</td>
<td>143</td>
<td>720</td>
</tr>
<tr>
<td>30</td>
<td>630</td>
<td>121</td>
<td>751</td>
</tr>
<tr>
<td>35</td>
<td>653</td>
<td>150</td>
<td>803</td>
</tr>
<tr>
<td>40</td>
<td>680</td>
<td>143</td>
<td>823</td>
</tr>
</tbody>
</table>

Microscopic study

The crystals of calcium oxalate (with and without inhibitors) were observed using a light microscope (Labomed) equipped with a digital camera. The photographs of calcium oxalate were taken using the objective of 40X and eye piece of 10X.

Table 2: Effect of 25%, 50%, 75% and 100% of \(D. \text{ purpurae}\), \(C. \text{ virosa}\), \(U. \text{ uva-ursi}\) and \(A. \text{ montana}\) extracts on calcium oxalate crystallization inhibition

<table>
<thead>
<tr>
<th>Percentages of drug extracts</th>
<th>(D. \text{ purpurae})</th>
<th>(C. \text{ virosa})</th>
<th>(U. \text{ ures})</th>
<th>(A. \text{ montana})</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>63.2</td>
<td>71.1</td>
<td>78.2</td>
<td>61.2</td>
</tr>
<tr>
<td>50%</td>
<td>70.9</td>
<td>73.5</td>
<td>80.1</td>
<td>70.0</td>
</tr>
<tr>
<td>75%</td>
<td>72.3</td>
<td>80.1</td>
<td>88.9</td>
<td>72.4</td>
</tr>
<tr>
<td>100%</td>
<td>80.4</td>
<td>91.2</td>
<td>95.7</td>
<td>80.2</td>
</tr>
</tbody>
</table>

RESULTS

Pronounced diuretic activity was exhibited on administration of 300mg/kg of oral dose of following drug extracts; \(A. \text{ uva-ursi}\) \((2.65\pm0.0033)\); \(U. \text{ ures}\) \((1.66\pm0.0033)\); \(S. \text{ nigra}\) \((2.11\pm0.0033)\); \(A. \text{ montana}\) \((2.59\pm0.0033)\); \(A. \text{ mellifica}\) \((1.90\pm0.0024)\); \(D. \text{ purpurae}\)
(0.95±0.0024); C. virosa (2.27±0.0024); T. occidentalis (2.04±0.0024) in comparison to control and standard drug. Maximum inhibition of calcium oxalate crystallization was observed in case of A. uva-ursi 95.7%, A. montana 80.2%, D. purpurea 91.2%, C. virosa 91.2%; while no anti-urolithic activity was observed in U. urens, S. nigra, A. mellifica and T. occidentalis extracts (Tables 1-3).

Table 3: Effect of D. purpurea, C. virosa, A. uva-ursi and A. montana extracts on different phases of crystallization

<table>
<thead>
<tr>
<th>Drug extracts</th>
<th>Nucleation</th>
<th>Growth</th>
<th>Aggregation</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. purpurea</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C. virosa</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>A. uva-ursi</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>montana</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

DISCUSSION

Worldwide kidney stone formation is a problem. Pakistan comes under “stone belts” area. 60% of the majority kidney stones consist of calcium oxalate and they exist in the form of calcium oxalate monohydrate and calcium oxalate dihydrate. The pathogenesis of calcium oxalate stone formation is a multi-step process and in essence includes: nucleation, crystal growth, crystal aggregation and crystal retention. Stone formation takes place due to supersaturated urine. Urolithiasis is a complex process that occurs due to imbalance between promoters and inhibitors in the kidneys. The factors involved in stone formation include urine output, concentration of urine, urine pH, infection or damage within the urinary tract. Many anti-lithic medicinal plants are available that contain chemical constituents that have an inhibitory effect in the crystallization of calcium oxalate. A. uva-ursi exhibited pronounced diuretic (2.65±0.0033) and anti-urolithic activity (95.7%) may be due to the presence of arbutin, a phenolic glycoside along with ursoic acid and isoqueretin are the main constituent that has been reported by many researchers to be effective in relieving pain associated with kidney stones, cystitis, nephritis as well as a diuretic and U. urens showed significant diuretic activity (1.66±0.0033) and no anti-urolithic activity as reported by U. urens has the property of increasing the urine flow.

Our results support the diuretic activity (2.11±0.0033) of S. nigra as reported by other researcher but anti-urolithic activity was not found that was contradictory to the traditionally reported use of S. nigra in removal of kidney stones. A. montana extract revealed potent diuretic (2.59±0.0033) and anti-urolithic activity (80.2%) in similarity to the previously reported results indicating its usefulness in the treatment of wounds, reducing inflammation and urolithiasis. Potent diuretic activity (1.90±0.0024) and no anti-urolithic activity were observed in A. mellifica extract. Our results support the efficacy of A. mellifica extract in the treatment of urine retention. The chemical constituents of A. mellifica like phospholipase A2, phospholipase B, Hyaluronidase, phosphatase and α-glucosidase may play a significant role in symptomatic treatment of kidney diseases like retention of urine and kidney stones. D. purpurea extract showed prominent diuretic (0.95±0.0024) and anti-urolithic activity (91.2%) as it is already well-known for its usefulness as a cardiac, diuretic, stimulant and tonic. It helps urinary retention by improving the blood supply to the kidneys and helpful in removing obstructions within the kidneys may be due to its glycosides content. Diuretic (2.27±0.0024) and anti-urolithic activity (91.2%) was found in C. virosa extract may be due to its pseudoalkaloids content. Our C. virosa results are in conformity to already report diuretic activity along with its specific effect on treating convulsions associated with dialysis in end-stage renal failure patients. Diuretic activity was present (2.04±0.0024) whereas no anti-urolithic activity was found in T. occidentalis extract. Diuretic activity of T. occidentalis may be due to its volatile oil constituents.

CONCLUSION

Diuretic are useful in treatment of diseases associated with retention of urine like chronic renal failure, congestive heart disease, nephritis, toxemia of pregnancy, premenstrual tension, hypertension and pulmonary congestion. Synthetic diuretics like loop and thiazide cause inhibition of potassium secretion leading to potassium retention that has some toxic effects. On contrary, many herbs have been explored and found to possess potent diuretic activity with lesser toxic effects. Our research work exposed the efficacy of crude extracts for the treatment of urolithiasis and urinary retention associated with cardiac, renal or other diseases.

CONFLICTS OF INTEREST

None

REFERENCES

15. Bradley P. British Herbal Compendium. A handbook of scientific information on widely used plant drugs; companion to volume 1 of the British Herbal Pharmacopoeia Volume 1, 1992; British Herbal Medicine Association, Bournemouth.