Evaluation of Total Phenolic, Flavonoid Contents and Antioxidant Activity of Acokanthera oppositifolia and Leucaena leucocephala

Preeti Sharma, Savita Chaurasia*

Department of Biotechnology, IMS Engineering College, NH-24, Adhyatmak Nagar, Ghaziabad Uttar Pradesh -201009 India.

Available Online: 1st February, 2015

ABSTRACT
Objective: The generation of reactive oxygen species and free radicals in human is suggested to contribute to the wide range of pathological disturbances such as, inflammations, cancer, diabetes and arthritis. Therefore the present study was performed to evaluate the antioxidant potential of Acokanthera oppositifolia and Leucaena leucocephala.

Methods: Three different solvent extracts of both plants were used in the study to evaluate their TPC by using Folin Coitaleu reaction and flavonoid contents were determined by AlCl3 assay. The antioxidant potential was determined using four different test including metal chelation, reducing power, superoxide anion scavenging and by hydroxyl radical scavenging assay. Results: Total phenol content ranged from 7.51±0.02 to 12.06±0.03 mg GAEg-1 (Gallic acid equivalent) for A. oppositifolia and 13.40±0.08 to 28.49±0.02 mg GAEg-1 for L. leucocephala while total flavonoid ranged 0.373±0.04 to 1.325±0.08 mg QEG-1 (Quercetin equivalent) for A. oppositifolia and 2.806±0.05 to 3.587±0.03 mg QEG-1 for L. leucocephala. All the extracts under study exhibited good antioxidant activity in concentration dependent manner. Among all extracts methanolic extract of A. oppositifolia and chloroform extract of L. leucocephala exhibited better Fe2+ chelating activity with IC50 0.065 and 0.112 mg/ml respectively, Fe (III) to Fe (II) reducing capacity with IC50 0.23 and 0.42 mg/ml and superoxide anion scavenging potential with IC50 0.425 and 0.675 mg/ml. In scavenging of hydroxyl radical A. oppositifolia acetone and L. leucocephala methanolic extract was most effective one with an inhibitory effect of 83.22 % ±0.03 and 85.47 % respectively at 1.0 mg/ml (IC50 0.12 & 0.25 mg/ml). Conclusion: All the extracts of A. oppositifolia and L. leucocephala leaves is potentially good source of antioxidant, which are found to be quite promising as a multipurpose medicinal agent. Phenolic and flavonoids contents are suggested to be responsible for antioxidant potential.

Keywords: Phytochemicals, Superoxide Anion, Hydroxyl radical, chelation, flavonoid, Phenolic

INTRODUCTION
In living systems, oxidation is a basic part of the normal metabolic process, in which Reactive oxygen species (hydrogen peroxide and hypochlorous acid) and many free radicals (hydroxyl radical (OH) and superoxide anion are, generated. Rapid production of free radicals and reactive oxygen species (ROS) may cause alteration in the structure and function of cell constituents and membranes and can results in human neurologic and other disorders such as cancer, diabetes, inflammatory disease, asthma, cardiovascular, neurodegenerative diseases, and premature aging and arthritis. Exposure of DNA to free radicals causes extensive strand breakage and degradation of deoxyribose. The mechanistic study of different forms of cancers revealed that its development and progression is linked to multiple mutations related to oxidative DNA damage that affect the integrity of genome and thus leading to malformations. Free radicals are involved in both the process of aging and the development of cancer. Therefore, the prevention of the above conditions requires the presence of antioxidants or the free radical scavenging molecules in the body. The chemical constituents present in herbal drugs are a part of the physiological functions of living flora and hence they are believed to have better compatibility with the human body. Studies have shown that natural products derived from food and medicinal plants are the potential sources of antioxidants.

Acokanthera is a genus of flowering plants in the family Apocynaceae. All parts of Acokanthera oppositifolia, except for the pulp of the ripe fruit, contain large amounts of cardiac glycosides responsible for the activity as arrow poison, but also act as cardiac stimulant. This plant has been used for treatment of headache, snake bite & spider bite, in treatment of muscles pain, to treat excessive & irregular menstruation, leaf infusion used intreatment of abdominal pain, Small pieces of stem are chewed to relieve toothache, in intestinal worms treatment and also for aches and colds. This plant is also used in low doses to treat patients suffering from congestive heart failure. Leucaena leucocephala belong to family Fabaceaeis a small, fast-growing mimosoid tree native to southern Mexico and northern Central America but is now naturalized throughout the tropics. L. leucocephala is used for treatment of intestinal worms, measles, to treat scurf, remedy for diabetes. The roasted seeds help to

*Author for Correspondence
increase menstrual flow. In present study A. oppositifolia and L. leucocephala has been selected to study their phytochemical constituents and antioxidant potential. We selected these plants; because of easy availability and both plants possess various medicinal properties and have been used in traditional system of medicine.

MATERIALS AND METHOD

Chemical used
Folin-Ciocalteu Reagent was obtained from Sisco Research laboratories Pvt. Ltd., Mumbai, India; Gallic acid, aluminium chloride, Quercetin were purchased from HIMEDIA laboratories Pvt. Ltd., Mumbai, India; sodium nitrite, Ferrozine, Ferrous sulphate, TCA, Sodium chloride, phenazine methosulfate PMS, nitroblue tetrazolium NBT and nicotineamide adenine dinucleotide NADH, 1, 10-phenanthroline, H2O2, FeCl3, EDTA, Mannitol, Methanol, Acetone, Chloroform, Sodium Carbonate, Potassium thiocyanate, potassium ferricyanide were obtained from Central Drug House Pvt. Ltd., New Delhi, India and Hi-Media.

Collection of plant material
Leaves of A. oppositifolia and L. leucocephala were collected from the Botanical garden of M.M. College, Modinagar and were identified and authenticated by Dr. D.K. Awasthi Professor, Department of Botany, M.M. College, Modinagar, affiliated to CCS University, Meerut, India.

Preparation of crude plant extracts
The collected leaves were washed twice with distilled water and then they were dried in shade. The dried leaves were coarsely crushed using a grinder. 100 gm. of dried leaf powder of different plants leaves were soaked in 250 ml of different organic solvent (Methanol, Acetone, Chloroform) for 10 days. After 10 days it was passed through No.1 Whatman filter paper (Whatman Ltd., England). The extracted solutions were concentrated under vacuum on a rotary evaporator at 40°C and stored at 4°C for further use.

Qualitative Phytochemical screening
Test for Phenols
To the extract, few drops of 10% aqueous ferric chloride were added. Appearance of blue or green color indicates the presence of phenols.

Test for Flavonoids
The stock solution (1 mL) was taken in a test tube and added few drop of dilute NaOH solution. An intense yellow colour was appeared in the test tube. It became colourless when on addition of a few drop of dilute acid that indicated the presence of flavonoids.

Test for Saponin
The stock solution (1 mL) was taken in a test tube and diluted with 20 mL of distilled water. It was shaken by hand for 15 min. A foam layer was obtained on the top of the test tube. This foam layer indicated the presence of saponins.

Test for tannins
The stock solution (3 mL) was taken in a test tube and diluted with chloroform and added acetic anhydride (1 mL). Finally, sulphuric acid (1 mL) was added carefully by the side of test tube to the solution. A green colour was formed which showed the presence of tannin.

Test for alkaloids
2 ml of Wagner’s reagent was added in methanolic extract formation of reddish brown precipitate indicates the presence of alkaloids.

Quantification of total phenolic content
The total flavonoid content of the acetone, chloroform and methanolic extracts of leaves A. oppositifolia and L. leucocephala was determined using colorimetric assay with slight modification. In brief; 0.1 ml plant extracts were diluted to 1 ml with distilled water. To this solution 0.5 ml of Folin-Ciocalteu reagent (1:1) and 1.5 ml of 20% sodium carbonate solution was added. The mixture was incubated for 2 hours at room temperature. The volume was raised to 10ml with distilled water and the absorbance of blue colored mixture was measured at 765 nm. The standard curve was prepared by using Gallic acid. The total phenolic contents were expressed as mg GAEg⁻¹ (Gallic acid equivalent). The regression equation obtained from calibration curve was used to determine total phenol content.

Quantification of total flavonoid content
The total flavonoid content of the acetone, chloroform and methanolic extracts of leaves A. oppositifolia and L. leucocephala was determined using colorimetric assay with slight modification. The mixture consisting of 1 ml of extract solution, 0.3 ml of sodium nitrite (5%) and 0.3 ml of aluminium chloride (10%) was incubated for 5 minutes followed by addition of 1M sodium hydroxide solution (2ml). The volume of the mixture was raised to 10ml and it was then thoroughly vortexed. The absorbance of pink colored solution was determined at 510 nm. The flavonoid content was calculated from standard curve of Quercetin and expressed as mg QEG⁻¹ (Quercetin equivalent).

Metal Chelation Assay
The potential of plant extracts to chelate Fe²⁺ was determined by colorimetric based ferrozine assay, with slight modifications. Different concentration of extracts (1ml, 20-200 µg/ml) was mixed with 3.7 ml of methanol and 2mM ferrous sulphate (0.1 ml). The reaction was initiated by 5mM of ferrozine (0.2 ml). The mixture was kept at room temperature for 10 minutes. The absorbance of the mixture was determined at 562 nm. The inhibition percentage was calculated using the formula. Inhibition % = Abs. of Control - Abs. of Sample / Abs. of Control × 100

Reducing power assay
The reducing power of different fractions was determined by the method of. In briefly, 1 ml of extract of different concentrations was mixed with 2.5 ml of phosphate buffer (200 mM, pH 6.6) and 2.5 ml of 1% potassium ferricyanide. The mixture was incubated at 50°C for 20 minutes. A volume of 2.5 ml of 10% TCA was then added to the mixture and centrifuged at 3000 rpm for 10 minutes. 2.5 ml of supernatant was mixed with 2.5 ml of distilled water and 0.5 ml of FeCl3 (0.1%) and the absorbance was measured spectrophotometrically at 700nm.

Hydroxyl radical scavenging assay
The hydroxyl radical scavenging activity was assayed according to the method of Jing et al.29. Reaction mixture contained 60 µl of 1mM FeCl$_2$, 90µl of 1, 10-phenanthroline, 2.4 mL of 0.2 M phosphate buffer (pH 7.8), 150 µl of 0.17M H$_2$O$_2$, and 1.0 mL of extracts at various concentrations. Adding H$_2$O$_2$ started the reaction. After incubation at room temperature for 5min. the absorbance of mixture at 560 nm was measured. The inhibition percentage was calculated using the same formula given above.

Superoxide Anion Scavenging Assay
In order to assess the superoxide anion scavenging activity of different plants extracts, 1ml of plant extract of different concentrations (20-200µg/ml) was mixed with 156µM NADH (1ml), 60µM NBT (1ml) and 468µM phenazine methosulphate (1ml) in phosphate buffer (pH = 8.3). The reaction was initiated with the addition of PMS. The reaction mixture was incubated at 25°C for 10 minutes. The absorbance of colored complex was measured at 560nm30.The inhibition percentage was calculated using the same formula given above. The experimental results were expressed as mean ± standard deviation (SD) of six sample measurements.

RESULTS AND DISCUSSION

Table 1: Qualitative phytochemical analysis of A. oppositifolia and L. leucocephala

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>A. oppositifolia</th>
<th>L. leucocephala</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaloid</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phenol</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Flavonoid</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Saponin</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanin</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+/- Represents presence of the phytoconstituent; - represents absence of the phytoconstituent

Table 2: Quantitative estimation of some phytochemical

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Total phenolic content mg/g equiv. to Gallic acid</th>
<th>Total flavonoid content mg/g equiv. to Quercetin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetone</td>
<td>11.43±0.02</td>
<td>1.34±0.08</td>
</tr>
<tr>
<td>Chloroform</td>
<td>7.51±0.02</td>
<td>2.849±0.02</td>
</tr>
<tr>
<td>Methanol</td>
<td>12.06±0.03</td>
<td>1.550±0.008</td>
</tr>
</tbody>
</table>

Each value is expressed as mean ± standard deviation (n= 6)
mg/gm. equiv. to Quercetin for L. leucocephala acetone, chloroform and methanolic extracts respectively.

Chelating Power assay

It was observed (Table 3) that all organic extracts under study exhibited Fe^{2+} ions chelating potential in a dose dependent manner. Among different extracts highest metal chelation was observed with methanol extract (IC_{50} 0.065 mg/ml) of A. oppositifolia as Fig. [1] and with chloroform extract (IC_{50} 0.68 mg/ml) of L. leucocephala as Fig. [2]. Results were compared with standard metal chelating agent EDTA (IC_{50} 0.509 mg/ml). A significant correlation has been observed between total phenolic contents and metal chelation activity as Fig. [3].

Reducing power assay

Results in (Table 3) showed that A. oppositifolia methanol extract showed better reducing ability 0.520 ±0.06 absorbance (IC_{50} 0.234 mg/ml) when compared to acetone and chloroform. Both acetone and chloroform extracts also exhibited Fe (III) reducing abilities with 0.448 ±0.05 and 0.353 ±0.01 respectively (IC_{50} 0.22 and 0.242 mg/ml). In L. leucocephala leaves among the different solvent extracts chloroform extract showed better reducing ability 0.460 ±0.008 (IC_{50} 0.42 mg/ml) in comparison to Methanol 0.364 ±0.006 and acetone 0.339 ±0.006 (IC_{50} 0.40 ±0.38 mg/ml respectively). It was found that the tendency to reduce Fe (III) to Fe (II) in a dose dependent manner. Results were compared with standard reducing agent gallic acid (IC_{50} 0.651 mg/ml).

Superoxide anion scavenging assay

All the extracts under study showed superoxide radical scavenging property (Table 3). At a dose of 1.0 mg/ml 78.62 ±0.05 inhibitions was observed with methanol extract of A. oppositifolia followed by chloroform 66.43 ±0.05% and acetone 60.11 ±0.05% under similar experimental condition. In L. leucocephala at a dose of 1.0 mg/ml 68.91 ±0.05, 62.89 ±0.8%, 50.98 ±0.4% inhibitions were observed with chloroform, methanol and acetone extracts respectively. It was found that the tendency to scavenge superoxide radical in a dose dependent manner. Results were compared with standard reducing agent quercetin (IC_{50} 0.744 mg/ml).

Hydroxyl radicals scavenging activity

Results in (Table 3) indicate both the plants under study showed significant hydroxyl radical scavenging property. At a dose of 1 mg/ml acetone and chloroform extracts of A. oppositifolia showed around 83% ±0.03 inhibition followed by methanol 75.51 ±0.02%. Under similar experimental condition L. leucocephala extracts also showed significant hydroxyl radical scavenging property at a dose of 1 mg/ml with 85.47 ±0.03%, 72.41 ±0.05%, 67.11 ±0.06% inhibitions with methanol, chloroform and acetone extracts respectively. It was found that the tendency to scavenge hydroxyl radicals in a dose dependent manner. Results were compared with standard reducing agent mannitol (IC_{50} 0.117 mg/ml).

Correlation

Total phenolic content showed good correlation with antioxidant activity in A. oppositifolia with r^2 value given Fig (3). On the basis of these result we reported, that the phenols are responsible for the antioxidant activity of the plant. Phenolic compounds may contribute directly to the antioxidant action due to the presence of hydroxyl functional groups around the nuclear structure that are potent hydrogen donors. Phenolics content are very

Table 3: Comparison of the antioxidant and free radical scavenging capacities of different solvent extracts of A. oppositifolia and L. leucocephala.

<table>
<thead>
<tr>
<th>Plants</th>
<th>Concentration (mg/ml)</th>
<th>Methanol</th>
<th>Acetone</th>
<th>Chloroform</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. oppositifolia</td>
<td>IC_{50}</td>
<td>0.25</td>
<td>0.50</td>
<td>0.75</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td>0.38</td>
<td>0.364 ±0.006</td>
<td>0.36 ±0.05</td>
<td>0.356 ±0.05</td>
</tr>
<tr>
<td>A. oppositifolia</td>
<td>0.50</td>
<td>78.60 ±0.05</td>
<td>70.20 ±0.03</td>
<td>57.46 ±0.06</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td>0.75</td>
<td>92.62 ±0.05</td>
<td>77.68 ±0.05</td>
<td>74.40 ±0.03</td>
</tr>
<tr>
<td>A. oppositifolia</td>
<td>1.0</td>
<td>0.364 ±0.006</td>
<td>0.36 ±0.05</td>
<td>0.356 ±0.05</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td></td>
<td>0.37 mg/ml</td>
<td>0.72 mg/ml</td>
<td>0.68 mg/ml</td>
</tr>
<tr>
<td>A. oppositifolia</td>
<td>0.25</td>
<td>0.364 ±0.006</td>
<td>0.36 ±0.05</td>
<td>0.356 ±0.05</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td>0.50</td>
<td>78.60 ±0.05</td>
<td>70.20 ±0.03</td>
<td>57.46 ±0.06</td>
</tr>
<tr>
<td>A. oppositifolia</td>
<td>0.75</td>
<td>92.62 ±0.05</td>
<td>77.68 ±0.05</td>
<td>74.40 ±0.03</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td>1.0</td>
<td>0.364 ±0.006</td>
<td>0.36 ±0.05</td>
<td>0.356 ±0.05</td>
</tr>
<tr>
<td>A. oppositifolia</td>
<td>0.353 ±0.01</td>
<td>0.36 mg/ml</td>
<td>0.76 mg/ml</td>
<td>0.68 mg/ml</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td>0.42 mg/ml</td>
<td>0.364 ±0.006</td>
<td>0.36 ±0.05</td>
<td>0.356 ±0.05</td>
</tr>
<tr>
<td>A. oppositifolia</td>
<td>0.50</td>
<td>78.60 ±0.05</td>
<td>70.20 ±0.03</td>
<td>57.46 ±0.06</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td>0.75</td>
<td>92.62 ±0.05</td>
<td>77.68 ±0.05</td>
<td>74.40 ±0.03</td>
</tr>
<tr>
<td>A. oppositifolia</td>
<td>1.0</td>
<td>0.364 ±0.006</td>
<td>0.36 ±0.05</td>
<td>0.356 ±0.05</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td></td>
<td>0.37 mg/ml</td>
<td>0.72 mg/ml</td>
<td>0.68 mg/ml</td>
</tr>
<tr>
<td>A. oppositifolia</td>
<td>0.25</td>
<td>0.364 ±0.006</td>
<td>0.36 ±0.05</td>
<td>0.356 ±0.05</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td>0.50</td>
<td>78.60 ±0.05</td>
<td>70.20 ±0.03</td>
<td>57.46 ±0.06</td>
</tr>
<tr>
<td>A. oppositifolia</td>
<td>0.75</td>
<td>92.62 ±0.05</td>
<td>77.68 ±0.05</td>
<td>74.40 ±0.03</td>
</tr>
<tr>
<td>L. leucocephala</td>
<td>1.0</td>
<td>0.364 ±0.006</td>
<td>0.36 ±0.05</td>
<td>0.356 ±0.05</td>
</tr>
</tbody>
</table>

Each value is expressed as mean ± standard deviation (n=6)
important plant constituents because they can act as reducing agents, hydrogen donors and metal chelator. They also act as radical scavenger due to their hydroxyl groups. The antioxidant activity of phenolic compounds is mainly due to their redox properties, which play an important role as free radical scavengers, reducing agents, quenchers of singlet oxygen and complexes of pro-oxidant metals Flavonoids found to be strong antioxidants because of their phenolic hydroxyl groups31-32.

CONCLUSION

Based on the results of this study, it may be concluded that all the extracts A. oppositifolia and L. leucocephala leaves possess high antioxidant as well as iron chelating properties in vitro. These activities might be due to the presence of phenolics, flavonoids and others phytochemical constituents. Further studies of the plant material in evaluating the antioxidant potential, in vivo may be interesting.

CONFLICT OF INTERESTS

No any conflict of interest.

REFERENCES

10. Tripathi YB, Chaurasia S. Effect of S. nux-vomica alcoholic extract on lipid peroxidation in rat liver.

