Review Article

A Review on Fruit Pericarp A Rich Source of Phytochemicals and Pharmacological Activities

Swathi Putta, Eswar Kumar Kilari*

A.U. College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, India

Available Online: 11th September, 2015

ABSTRACT
Several phytochemicals possessing polyphenolic structures are advocated as nutraceutical food supplements for better health care during recent years, most of them are claimed to possess antioxidant activity. The Ayurveda and naturopathic system of medicine indigenous to India clearly states the use of medicinal plants for treating various disorders. Literature suggests that the pericarp is a rich source of active constituents. The present review has provided an overview of fruit pericarp having various pharmacological activities.

Keywords: Fruit pericarp, Phytochemicals, Pharmacological activities.

INTRODUCTION
The type of fruit depends on the type of the pericarp becomes dry and hard or soft and fleshy. The pericarp consists of three layers. The outer skin may be tough and hard; the middle layer may be succulent and the inner layer may be hard or stony. Epicarp Gr. "outside" + "fruit" is a botanical term for the outermost layer of the pericarp or fruit. It is an outer skin of the fruit, which bears oil glands and pigments. It is composed by cellulosic material and contains essential oils, paraffin, waxes, steroids, triterpenoids, fatty acids, pigments carotenoids, chlorophylls, flavanoids and enzymes. Mesocarp Gr. "middle" + "fruit" is a botanical term for the succulent and fleshy middle layer of the pericarp of a fruit, which lies between the epicarp and the endocarp; it is usually the major part of the fruit. Endocarp Gr. "inside" + "fruit" is a botanical term for the inside layer of the pericarp fruit, which directly surrounds the seeds. It may be membranous as in citrus only part consumed, or thick and hard as in the stone fruits of the family Rosaceae such as peaches, cherries, plums, and apricots. In nuts, it is the stony layer that surrounds the kernel of peanuts, walnuts and that is removed prior to consumption.

During fruit development several phases can be recognized: initially the fruit diameter increases due to cell division activities, which rapidly amplify the number of cell layers in the pericarp, followed by a growth phase caused by cell expansion. The expansion phase is accompanied by endoreduplication; that is, a multiplication of the genome without mitosis, leading to an increase in DNA content per cell, which can reach up to the end of fruit growth.

The fruit pericarps are considered to be a rich source of phytochemicals. Some of the pericarps, their phytochemicals and reported biological activities are described below.

*Author for Correspondence

Ananas cosmossus (Bromeliaceae)

The pericarp contains bromelin and other phytochemical constituents include fiber, phenolics, flavonoids, anthocyanins and vitamin A and C³. All these compounds were reported for its antioxidant activity⁴.

Averrhoa carambola (Oxalidaceae)

The fruit pericarp contains 96 detected volatile components namely 1-Phenyl dodecane and 1- Phenyl undecane were the major identified hydrocarbons 17% and 11% respectively, aldehydes 14%, cyclohexyl octadecanal 8%, protein content was 11%, tannin content 1.04% and small amounts of vitamin C, β-carotene, potassium and calcium. It has anti-inflammatory, antipyretic, analgesic, anticonvulsant, antioxidant, hypolipidemic and hypoglycemic activities and antimicrobial activities against selected bacteria and fungi⁵.

Balanites aegyptiaca (Zygophyllaceae)

The pericarp contains saponins, tannins, flavonoids, steroids, alkaloids, glycosides, phlobatannin, cardiac glycosides and phenols⁶. It is used traditionally to treat spleen and liver conditions⁷.

Benincasa hispida (Cucurbitaceae)

The pericarp contains flavonoids, saponins or organic acids⁷. These active principles responsible for diuretic activity⁸.

Black rice (Poaceae)

The pericarp contains anthocyanins namely cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, peonidin-3-O-glucoside, and cyanidin-3-O-rutinoside⁹. Black rice improves serum triglyceride levels, which contributes to the suppression of atherosclerosis, protects against insulin resistance, alcoholic liver injury and light-induced retinal damage¹⁰.
Citrus sinensis (Rutaceae)
The pericarp contains natural flavonoid glycosides, Polymethoxy flavones PMFs, quercetin and hesperidin. It possesses a multitude of biological activities including anti-inflammatory, antihyperglycemic, antihyperlipidemic, antioxidant and antimutagenic properties.

Cucumis melo (Cucurbitaceae)
Phytochemical investigations revealed the presence of maximum amount of steroids and steroidal glycosides, carbohydrates, flavonoids, tannins and saponins. It is used in flatulence, leprosy, fever, jaundice, diabetes, constipation, cough, bronchitis, ascites, anaemia, other abdominal disorders and amentia.

Eugenia jamolana (Myrtaceae)
The pericarp contains polyphenols, including hydrolysable tannins based on hexahydropyrophenol HHDP and gallotannins or valoneol esters. It has an anti-inflammatory, antilulcer, hepatoprotective and antioxidant activities.

Euphoria longana (Sapindaceae)
The pericarp is a rich source of polyphenols gallic acid and ellagic acid. It has antioxidant activities like ferric reducing ability power, DPPH radical, hydroxyl radical and superoxide radical scavenging activities.

Feronia limonia (Rutaceae)
The pericarp contains 2, 6-dimethoxybenzoquinone and ostheno and Three volatile flavour compounds like methyl hexahyde, ethyl-3-hydroxyhexanoate, and butanoic acid. Free fatty acids like palmitic, oleic, linoleic, linolenic acid, palmitoleicacid, stearic acids β-sitosterol, β-amyrin and unsaponifiable matter lupeol, stigmastanol. In India, the fruit pericarp is used as a stomachic, diuretic, antiinflammatory, antimicrobial, cardiotonic and tonic to the liver and lungs. Some recent reports identified its use in gastrointestinal disorders.

Garcinia mangostana (Clusiaceae)
Xanthones that have been isolated from the pericarp of mangosteen fruit are α-mangostin, γ-mangostin, garcinan, garcimone D, BR-xanthone, gartanin, 8-deoxygartanin, tannins and a flavonoid called epicatechin. The pericarp of mangosteen fruit has been used for treatment of skin infections and wounds, amoebic dysentery, inflammation, diarrhea, cholera, dysentery, anti-parasitic, antipyretic, analgesic and antidiabetic activities.

Hyphaene thebaica (Arecaceae)
The pericarp contains tannins, steroids, saponins, carbohydrates, flavonoids, terpenes, terpinoids and essential oils. It had antimicrobial actions, insect repellents, antioxidants, feeding deterrents, blood lipid regulating, antplatelet, antiinflammatory and antihypertensive properties, which provide protection from stress-induced myocardial injury, as well as anti-inflammatory, analgesic, immunomodulatory and antitumor functions.

Litchi chinensis (Sapindaceae)
The pericarp contains large quantity of phenols, flavonoids, condensed tannins, cyanindin-3-glucoside and malvidin-3-glucoside may be present in these anthocyanins and quercetin glucoside. Used for tonic to heart, brain and liver. It is also used for antimicrobial activities.

Momordica chochinensis (Cucurbitaceae)
The pericarp contains flavonoids like rutin, myricetin, luteolin, quercitin, apigenin and kaempferol; carotenoids like α, β-carotene, zeaxanin, lycopene, lutein and phenolic compounds like gallic acid, vanillic acid, ferulic acid, caffeic acid, proto catechuic acid. It has antimicrobial, antiviral and antinflammatory activities, antioxidant activities like ferric reducing ability power, DPPH radical, hydroxyl radical and superoxide radical scavenging activities.

Persea americana (Lauraceae)
High concentrations of catechins, procyanidins and hydroxyquinamic acid have recently been determined in pericarp. It reduced blood pressure, hypoglycemic effect in diabetes and decreases the levels of alanine aminotransferase ALT, aspartate aminotransferase AST, albumin and creatinine.

Phaleria macrocarpa (Thymelaceae)
The pericarp contains mangiferin. It had hypoglycemic and anti-hyperglycemic activity. Used in liver diseases, vascular problems, cancer and in high blood pressure.

Polyalthia longifolia (Annonaceae)
The pericarp contains flavonoids, saponins, steroids, glycosides, tannins, clerodane diterpenoids and alkaloids. It had DPPH free radical scavenging, ferric reducing activity, potent inhibitory activity against Colletotrichum capsici and drug resistant uropathogen, antibacterial, cytotoxic and insecticidal activity.

Punica granatum (Punicaceae)
Pomegranate pericarp is a rich source of hydrolyzable tannins like punicalin, punedulcanin, punicalagin, gallic acid and ellagic acid esters of glucose, casuarinin, corilagin flavonoids like anthocyanins, catechins like epicathechin, epicatechin 3-galate, flavan-3-ol and kaempferol, kaempferol-3-o-glucoside, kaempferol-3-o-g-hammomglycoside. The pharmacological functions of pericarp include antimicrobial activity, antioxidant, antitumour, antimutagenic activity, antihepatotoxicity, antiasthmatic activity, antiinflammatory and anti bacterial properties. In hematology, decreasing low-density lipoprotein LDL oxidation and the incidence of heart disease also reported for cardiotoxic activity and antimarial activity.

Sapindus emarginatus (Sapindaceae)
Pericarp has Psisidal triterpenoid saponins acetylated triterpene saponins, hederagenin, sweet acyclic sesquiterpene glycoside and flavonoids. Used as anti-inflammatory, antipruritic oxystrotoptic action, antibacterial activity, antifebrility and antiandrogeneic activities. It is also used to purify the blood.

Sapindus mukorossi (Sapindaceae)
The pericarp contains triterpenoids, saponins, fatty acids, flavonoids, triterpenoids, saponins and fatty acids. Used to relieving cough, detoxification, emetic, contraceptive, treatment of excessive salivation, epilepsy and chlorosis.

Putta et al. / A Review on Fruit Pericarp...
Sapindus trifoliatus (Sapindaceae)
The pericarp contains glucose and saponins. It was used in hemi crania, hysteria or epilepsy and muscle relaxant activity84.

Semecarpus anacardium (Anacardiaceae)
Pericarp of fruit contains a bitter and astringent principle. The pericarp contains tarry oil consisting of 90% of oxy-acid anacardic acid and 10% of higher nonvolatile alcohol called cardol, also contains catechol and a mono-hydroxyphenol called anacardol85. It acts as antiasthmatic, stimulant, digestive, escharotics, carminative, antiseptic, demulcent, rheumatism, piles and in dyspepsia86,87.

Semecarpus anacardium (Anacardiaceae)
Pericarp oil contains flavonoids, phenols like cataract and anacardic acid88,89. Pericarp oil obtained from nut is used in treatment of asthma and digestive disorders90,91. Sorghum Caryopses (Poaceae)
The pericarp contains phenols, phenolic acids benzoic or cinnamic acid, flavonoids flavans-flavan-3-en-3-ols and tannins catechin92,93.

Terminalia chebula (Combretaceae)
The pericarp contains ellagic acid, gallic acid, chebulinic acid, chebulagic acid and corilagin. It was used as tonic and deobstruent in hepatic and spleen enlargements and in skin diseases, laxative, astrigent, anthelmintic properties, treatment of piles and external ulcers94.

Vitis vinifera (Vitaceae)
The pericarp contains polyphenolics, flavonoids, oligomeric proanthocyanidins and unsaturated fatty acids. It has antioxidant, lipid lowering95 and antitumor activities. Zanthoxylum schinifolium (Rutaceae)
Monoterpenes namely limonene and linalool which are the major chemical components present in pericarp. The essential oils, linalyl acetate, linalool, limonene, linalool, limonene and sabine96. It is effective for the treatment of inflammatory diseases, epigastric pain, stomachache, toothache, ascariosis, diarrhea and dysentery. Ziziphus rugosa (Rhamnaceae)
The pericarp was found to possess marked antibacterial, larvicidal and free radical scavenging activity97.

SUMMARY
Herbal medicine also called botanical medicine or phytomedicine98, refers to using a plant's seeds, berries, roots, leaves, bark, or flowers for medicinal purposes. Herbalism has a long tradition of use outside of conventional medicine. It is becoming more mainstream as improvements in analysis and quality control along with advances in clinical research show the value of herbal medicine in the treating and preventing disease over conventional medicines. Phytochemicals plays an important role in pharmacological activity. Apart from the above mentioned plant parts, the pericarp portion of the some of the fruits found to possesses large number of photochemicals. The photochemicals present in the pericarp are Flavonoids enhance the effects of Vitamin C and function as antioxidants. They are also known to be biologically active against liver toxins, tumors, viruses and other microbes99. Terpenoids are used extensively for their aromatic qualities. They play a role in traditional herbal science and are under investigation for Antibacterial, Antineoplastic and other Pharmaceutical functions100. Many of our most commonly used drugs are alkaloids from pericarp source and used as treatment for glaucoma, myasthenia gravis, muscle relaxant, analgesics, psychotropics, antihypertensives, antiarrhythmics, antimalarial, anticancer and antiseptics101. Volatile oils are complex of compounds with strong odour. And known to have antiseptic, bactericidal, virucidal and fungicidal activities102. Tannins comprise a large group of natural products widely distributed in the plant kingdom. They have a great structural diversity and used as antioxidant, antibacterial, antiviral, anticarcinogenic, cardiovascular system preventing, and antiinflammatory effects103. Many such plant glycosides present in the pericarp are used as medications for congestive cardiac failure, cardiotonics, antiarrhythmics, analgesics, antipyretics, anti-inflammatory, anticancer and synthetic glucocorticoids104. The part pericarp was a rich source of all the above mentioned phytochemicals. The present review suggests that the chemicals present in the pericarp can be developed into potential targets for many disorders.

REFERENCES

38. Balasubramanian K., Rajagopalan K. Novel xanthones from Garcinia mangostana, structures of...
BR-xanthone-A and BR-xanthone-B.

4589

92. Butler LG. The nature and amelioration of the anti nutritional effects of tannins in sorghum grain, in