ISSN: 0975-4873

Research Article

Antibacterial and Phytochemical Analysis of *Piper nigrum* using Gas Chromatography – Mass Spectrum and Fourier-Transform Infrared Spectroscopy

Ghaidaa Jihadi Mohammed¹, Aseel Mohammad Omran², Haider Mashkoor Hussein¹

¹College of Science, Al-Qadisiya University, Iraq ²College of Pharmacy, Babylon University, Iraq

Available Online: 9th June, 2016

ABSTRACT

The aims of the study were to investigate the presence of phytochemical compounds from the fruits of *Piper nigrum*, using methanolic extraction and report the main functional components by using fourier-transform infrared spectroscopy. The phytochemical compound screened by GC-MS method. A total of 55 bioactive phytochemical compounds were identified in the methanolic extract of P. nigrum. The identification of phytochemical compounds is based on the peak area, retention time molecular weight, molecular formula, chemical structure, MS Fragment ions and pharmacological actions. GC-MS analysis of P. nigrum revealed the existence of the Propanedioic acid, dimethyl ester, Bicyclo[3.1.1]heptane,6,6-dimethyl-2-methylene-,(1S), 3-Carene, Cyclohexene, 1-methyl-5-(1-methylethenyl)-,(R), 1,6-Octadien-3-ol,3,7-dimethyl, 2-Methyl-1-ethylpyrrolidine, 2-Isopropenyl-5-methylhex-4-enal, L-α-Terpineol, (R)-lavandulyl acetate, Pyrrolizin-1,7dione-6-carboxylic acid, methyl(ester), 7-epi-cis-sesquisabinene hydrate, Phenol, 2-methoxy-4-(1-propenyl)-,(Z), Eugenol, Alfa. Copaene, Naphthalene, 1, 2, 3, 5, 6, 7, 8, 8a-octahydro-1, 8a-dimethyl-7-(1-methyl), Epiglobulol, Caryophyllene, 1,4,7-Cycloundecatriene, 1,5,9,9-tetramethyl-,Z,Z,Z, α- ylangene, β-copaene, Cedran-diol,8S,13, Isocalamendiol, Cinnami acid , 4-hydroxy -3-methoxy-, {5-hydroxy-2-hydroxymethyl, (-)-Spathulenol, 1-Heptatriacotanol, Desacetylanquidine, 5-Isopropyl-2,8-dimethyl-9-oxatricyclo[4.4.0.0.(2,8)]decan-7-one, Estra-1,3,5(10)-trien-17\u00e1-ol, Diaminocyclohexane-N,N,N',N'-tetraacetic acid, Phytol, Piperidine,1-(1-oxo-3-phenyl-2-propenyl)-, Eicosanoic acid, 2-(acetyloxy0-1-[(acetyloxy)methyl]ethyl ester, 2,5,5,8a-Tetramethyl-6,7,8,8a-tetrahydro-5H-chromen-8-ol, Z-5-methyl-6heneicosen-11-one, 2H-1,2-Benzoxazine-3-carbonitrile,2- cyclohexyloctahydro-4a,8a-d, Indoxazin-4-one ,4,5,6,7tetrahydro-3-undecyl, 9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol,(3B,5Z,7E), 3-Oxo-10(14)-epoxyguai-11(13)-en-7-[2-(Ethoxycarbonyl)-3α,5β-dimethoxycyclopentyl -1]-heptanoic acid, 6.12-olide. 2H-Benzo[f]oxireno[2,3-E]benzofuran-8,(9H)-one,9-[[(1,3-benzodio, Nalorphine, 2-Cyclohexen -3-ol-1-one, 2-[1-iminotetradecyl]-, Piperine, Fenretinide, 11-Dehydrocorticosterone, 5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one,1,1a,1b,4,4a,7a,7b, 17a-Ethyl-3ßmethoxy-17a-aza-D-homoandrost-5-ene-17-one, Bufa-20,22-dienolide m,14,15-epoxy-3,11-dihydroxy-,(3β,5β,11α,15, 9-Desoxo-9-x-acetoxy-3,8,12-tri-O-acetylingol, Retinal ,9-cis-, 6-β-Naltrexol, Piperine, Ursodeoxycholic acid, 5α-Cholan-24-oic acid, 12α-hydroxy-3,7-dioxo-,methyl ester and Stigmasterol. The FTIR analysis of P. nigrum leaves proved the presence of Alkenes, Aliphatic fluoro compounds, Alcohols, Ethers, Carboxlic acids, Esters and Nitro Compounds. Methanolic extract of bioactive compounds of P. nigrum was assayed for in vitro antibacterial activity against Escherichia coli, Pseudomonas aerogenosa, Proteus mirabilis, Staphylococcus aureus and Klebsiella pneumonia by using the diffusion method in agar. The zone of inhibition were compared with different standard antibiotics. The diameters of inhibition zones ranged from 5.00 ± 0.16 to 0.40 ± 0.12 mm for all treatments.

Keywords: FT-IR, GC-MS analysis, Piper nigrum.

INTRODUCTION

Piper nigrum L. is a flowering vine in the family of piperaceae, therefore an important medicinal plant is used in traditional medicine in Asia and Pacific islands especially in Indian medicine¹. Pepper aroma and flavor due to their chemical substances especially the volatile oil. Black pepper oil has medicinal values. It can be used to help in treatment of pain relief, rheumatism, chills, flu, colds exhaustion, muscular aches, physical and emotional coldness, fever as nerve tonic and to increase circulation²-

⁵. The main pungent principle in the green berries of pepper *P. nigrum* L. is piperine. Generally the piperine content of black or white peppercorns lies within the range of 3-8 g/100 g, whereas the content of minor alkaloids piperyline and piperettine have been estimated as 0.2-0.3 and 0.2-1.6 g/100g respectively. The bioavailabilityenhancing property of piperine indicates its potential to be used as an adjuvant with therapeutic drugs in chronic ailments, to reduce the effective dose of the drug and, hence,

S.	Phytochemical compound		Formula	Mol. Wt.	Exact Mass	nanolic extract of <i>Piper nigrum</i> Chemical structure	MS Fragment- ions	P'cological actions
1.	Propanedioic acid , dimethyl ester	3.150	C ₅ H ₈ O ₄	132	132.042 258			Anti-tumor and antioxidant activity
2.	Bicyclo[3.1.1] heptane,6,6- dimethyl-2- methylene- ,(1S)-	3.339	$C_{10}H_{16}$	136	136.125 2		53,69,79,93 ,107,121,13 6	Anti- Helicobacter pylori activity and Anti- Candida activity
3.	3-Carene	3.693	$C_{10}H_{16}$	136	136.125 2		53,67,79,93 ,105,121,13 6	
4.	$\label{eq:cyclohexene} Cyclohexene \ , \\ 1\text{-methyl-}5\text{-}(1\text{-}\\ \text{methylethenyl}) \\ (R)\text{-}$	3.997	$C_{10}H_{16}$	136	136.125 2		53,68,79,93 ,107,121,13 6	Anti-microbial
5.	1,6-Octadien- 3-ol,3,7- dimethyl-	5.067	C ₁₀ H ₁₈ O	154	154.135 765	ОН	55,71,80,83 ,93,107,121 ,127,136,15 4	Pharmacologic al effects such as: anti- inflammation
6.	2-Methyl-1- ethylpyrrolidin e	5.696	C ₇ H ₁₅ N	113	113.120 4495		56,69,84,98 ,113	Anti-tumor activity.
7.	2-Isopropenyl- 5-methylhex- 4-enal	6.108	C ₁₀ H ₁₆ O	152	152.120 115	H	69,84,95,10 9,123,137	Antihyperglyc emic and anticariogenic
8.	L-α-Terpineol	6.303	C ₁₀ H ₁₈ O	154	154.135 765	OH OH	55,59,67,81 ,93,107,121 ,136	Anti- inflammatory
9.	(R)-lavandulyl acetate	6.629	$C_{12}H_{20}O_2$	196	196.146 33		53,69,80,93 ,107,121,13 6,154	Anti- inflammatory
10.	Pyrrolizin-1,7- dione-6- carboxylic acid , methyl(ester)	7.562	C ₉ H ₁₁ NO ₄	197	197.068 808			Anti-Viral and Anti-Tumor Activity
11.	7-epi-cis- sesquisabinene hydrate	8.357	C ₁₅ H ₂₆ O	222	222.198 365	HO	,105,119,13	anti-mutagenic

12.	Phenol , 2- methoxy-4-(1- propenyl)-,(Z)-	8.494	$C_{10}H_{12}O_2$	164	164.083 73	но	51,55,65,77 ,91,103,115 ,121,131,14 9,164	inflammatory
13.	Eugenol	8.523	$C_{10}H_{12}O_2$	164	164.083 73		51,55,65,77 ,91,103,115 ,121,131,13 7,149,164	Inflammatory
14.	Alfa.Copaene	8.740	$C_{15}H_{24}$	204	204.187 8		,105,119,13	Analgesic and anti-inflammatory activities
15.	Naphthalene,1, 2,3,5,6,7,8,8a- octahydro- 1,8a-dimethyl- 7-(1-methyl	8.958	$C_{15}H_{24}$	204	204.187 8		55,67,79,10 7,119,133,1 61,175,189, 204	Anti-bacterial
16.	Epiglobulol	9.181	C ₁₅ H ₂₆ O	222	222.198 365	HO	55,69,82,93 ,109,121,14 7,161,204,2 22	Antioxidant activity, antimicrobial, anti- inflammatory
17.	Caryophyllene	9.456	$C_{15}H_{24}$	204	204187 8		55,69,79,93 ,105,120,13 3,147,161,1 75,189,204	Several biological activities are attributed to beta-caryophyllene, such as anti-inflammatory, antibiotic, antioxidant, anticarcinogeni c and local anaesthetic
18.	1,4,7- Cycloundecatri ene, 1,5,9,9- tetramethyl- ,Z,Z,Z-	9.810	$C_{15}H_{24}$	204	204.187 8		55,67,80,93 ,107,121,13 6,147,161,1 75,189,204	Anti-aging, anti- hyperlipidemia and antimicrobial activities
19.	α- ylangene	10.00 5	$C_{15}H_{24}$	204	204.187 8	H H	55,67,77,93 ,105,119,13 3,147,161,1 89,204	Anti- inflammatory
20.	ß-copaene	10.08 5	$C_{15}H_{24}$	204	204.187 8	H	55,79,105,1 61,204	Anti- neuroinflamma tory and neuroprotectiv e
21.	Cedrandiol,8S,13-	10.46 8	C ₁₅ H ₂₆ O ₂	238	238.193 28	ОН	55,74,93,10 7,119,149,1 61,190,238	Anti-fungal activity

22.	Isocalamendiol	10.85 2	$C_{15}H_{26}O_2$	238	238.193 28	OH OH	55,81,111,1 59,202,223, 238	Anti- fertility activity and anti-bacterial activity
23.	Cinnami acid , 4-hydroxy -3- methoxy-,{5- hydroxy-2- hydroxymethyl		$C_{31}H_{40}O_{15}$	652	652.236 72	HO OH OH OH OH	55,77,91,10 5,121,151,1 68,194,215, 296,330,35 4,386,418	inflammatory
24.	(-)-Spathulenol	13.57 0	C ₁₅ H ₂₄ O	220	220.182 715	ОН	55,69,91,11 9,159,187,2 05,220	Antioxidant and anti- inflammatory activities
25.	1- Heptatriacotan ol		C ₃₇ H ₇₆ O	536	536.589 62	₩		Antioxidant, anticancer, anti inflammatory and sex hormone activity
26.	Desacetylanqui dine	14.47 4	$C_{17}H_{24}O_6$	324	324.157 288	OH OH	55,67,91,10 5,124,145,1 59,187,205, 264,281	New chemical
27.	5-Isopropyl- 2,8-dimethyl- 9- oxatricyclo[4.4 .0.0.(2,8)]deca n-7-one	15.24 0	$C_{14}H_{23}O_2$	222	222.161 98		55,69,81,95 ,109,123,15 1,162,194,2 22	Anti-termitic Activity
28.	Estra- 1,3,5(10)-trien- 17ß-ol	15.81 8	C ₁₈ H ₂₄ O	256	256.182 714	OH OH	57,73,85,97 ,129,157,18 5,213,241,2 56	osteoporosis
29.	Trans-1,2- Diaminocycloh exane- N,N,N',N'- tetraacetic acid,		$C_{14}H_{22}N_2O_8$	346	346.137 615	OH OH	55,81,96,11 0,153,181,1 97,225,241, 270	Unknown
30.	Phytol	16.66 5	C ₂₀ H ₄₀ O	296	296.307 917	НО	,111,123,13 7,196,221,2	Antioxidant activity
31.	Piperidine,1- (1-oxo-3- phenyl-2- propenyl)-	16.88 3	C ₁₄ H ₁₇ NO	215	215.131 014		49,278 51,84,103,1 31,149,172, 198,215	Antibacterial, analgesic and anti- inflammatory activity
32.	Eicosanoic acid , 2- (acetyloxy0-1- [(acetyloxy)me thyl]ethyl ester		$C_{27}H_{50}O_6$	470	470.360 739	9	57,71,84,98 ,117,137,15 9,171,227,2 69,295	Anti-

33.	2,5,5,8a- Tetramethyl- 6,7,8,8a- tetrahydro-5H-	18.53 1	$C_{13}H_{20}O_2$	208	208.146 33		57,91,106,1 34,175,190, 208	Anticancer and antioxidant activity
34.	chromen-8-ol Z-5-methyl-6- heneicosen-11- one		C ₂₂ H ₄₂ O	322	322.323 566	он 	55,71,83,97 ,139,169,19 7,241,307,3 22	Anti- Mycobacteriu m tuberculosis Activity, anti- inflammatory, analgesic and antimicrobial activities
35.	2H-1,2- Benzoxazine- 3- carbonitrile,2- cyclohexylocta hydro-4a,8a-d	18.74 8	C ₁₇ H ₂₈ N ₂ O	276	276.220 163		55,67,83,96 ,108,134,15 0,165,178,1 91,206,216, 234,249,27 6	
36.	Indoxazin-4- one ,4,5,6,7- tetrahydro-3- undecyl-	18.94 3	C ₁₈ H ₂₉ NO ₂	291	291.219 83			New chemical compound
37.	9,10- Secocholesta- 5,7,10(19)- triene-3,24,25- triol,(3ß,5Z,7E	19.24 6	$C_{27}H_{44}O_3$	416	416.329 044	OH OH	55,118,136, 158,176,20 7,253,383,4 16	anti-corrosion
38.	3-Oxo-10(14)- epoxyguai- 11(13)-en- 6,12-olide	19.37 7	$C_{15}H_{18}O_4$	262	262.120 508	O CONTRACTOR OF THE PARTY OF TH	53,81,91,10 5,135,174,1 93,244,262	_
39.	9- Octadecenami de , n-butyl-	20.75	C ₂₂ H ₄₃ NO	337	337.334 465	NH %	28,184,210, 252,280,29	inflammatory
40.	7-[2- (Ethoxycarbon yl)-3α,5β- dimethoxycycl opentyl-1]-		C ₁₉ H ₃₄ O ₆	358	358.235 538		4,308,337 265,280,29 7,311,326	and antioxidant New chemical compound
41.	heptanoic acid 2H- Benzo[f]oxiren o[2,3- E]benzofuran- 8,(9H)-one,9- [[(1,3-	21.24	C ₂₃ H ₂₉ NO ₅	399	399.204 573	NH NH		Antimicrobial and antifungal activities
42.	benzodio Nalorphine	21.27	$C_{19}H_{21}NO_3$	311	311.152 143	HO	81,91,115,1 28,152,174, 188,200,22 6,241,311	Anti-pruritic agent against morphine

43.	2-Cyclohexen - 3-ol-1-one , 2- [1- iminotetradecy 1]-,		C ₂₀ H ₃₅ NO ₂	321	321.266 779	OH NH	180,194,20	Antiulcer, hypolipidemic, antiatheroscler otic and anti- HIV
44.	Piperine	22.31	$C_{17}H_{19}NO_3$	285	285.136 494	\$100~~~°	63,84,115,1	Anti-pyretic and analgesic activities
45.	Fenretinide	22.78	C ₂₆ H ₃₃ NO ₂	391	391.251 13		58,69,81,95	proliferative
46.	11- Dehydrocortic osterone	24.67 0	$C_{21}H_{28}O_4$	344	344.198 76	ОН	55,67,79,91 ,105,121,14 7,189,227,2 67,285,313, 344	proliferative
47.	5H- Cyclopropa[3, 4]benz[1,2- e]azulen-5- one,1,1a,1b,4,4 a,7a,7b	24.83 6	$C_{20}H_{28}O_5$	348	348.193 674	OH OH		Biocides, anti- corrosion agents, drying agents, and coating
48.	17a-Ethyl-3ß- methoxy-17a- aza-D- homoandrost- 5-ene-17-one	24.91 6	C ₂₂ H ₃₅ NO ₂	345	345.266 779		55,71,91,10 5,138,193,2 09,241,296, 330,345	
49.	Bufa-20,22- dienolide m,14,15- epoxy-3,11- dihydroxy- ,(3β,5β,11α,15	25.11 1	C ₄₂ H ₃₂ O ₅	400	400.224 974	HO	55,67,79,91 ,107,135,18 7,213,231,2 49,278,349, 364,382,40 0	inhibitory activity, and
50.	9-Desoxo-9-x- acetoxy- 3,8,12-tri-O- acetylingol	25.52 3	$C_{28}H_{40}O_{10}$	536	536.262 146	HO	55,69,122,2 07,236,297, 357,417,47	
51.	Retinal ,9-cis-	25.96 3	$C_{20}H_{28}O$	284	284.214 016	X	55,69,79,95 ,119,133,17 3,199,213,2 41,255	Anti-oxidant role
52.	6-ß-Naltrexol	27.19 4	C ₂₀ H ₂₅ NO ₄	343	343.178 358	OH OH		
53.	Ursodeoxychol ic acid	28.34 4	$C_{24}H_{40}O_4$	392	392.292 66	но	55,67,81,93 ,145,213,25 5,302,356,3 74,392	Antiinflammat ory effect and anti- inflammatory activity

54.	5α-Cholan-24- oic acid , 12α- hydroxy-3,7- dioxo-,methyl ester		C ₂₅ H ₃₈ O ₅	418	418.271 925	
55.	Stigmasterol	29.16 8	$C_{29}H_{48}O$	412	412.370 516	

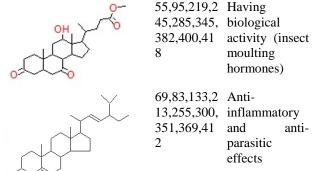


Table 2: FT-IR peak values of methanolic seeds extract of *Piper nigrum*.

S. No.	Peak (Wave	Intensity	Bond	Functional group assignment	Group frequency
	number cm-1)				
1.	650.1	57.535	-	Unknown	-
2.	688.59	59.347	C-H	Alkenes	675-995
3.	704.02	60.135	C-H	Alkenes	675-995
4.	759.95	64.754	С-Н	Alkenes	675-995
5.	827.46	67.689	C-H	Alkenes	675-995
6.	852.54	65.098	С-Н	Alkenes	675-995
7.	894.97	68.412	C-H	Alkenes	675-995
8.	927.76	60.301	C-H	Alkenes	675-995
9.	999.13	38.637	-	Unknown	-
10.	1014.56	38.696	C-F stretch	Aliphatic fluoro compounds	1000-10150
11.	1076.28	54.627	C-O	Alcohols, Ethers, Carboxlic acids, Esters	1050-1300
12.	1134.14	61.967	C-O	Alcohols, Ethers, Carboxlic acids, Esters	1050-1300
13.	1149.57	63.780	C-O	Alcohols, Ethers, Carboxlic acids, Esters	1050-1300
14.	1195.87	71.015	C-O	Alcohols, Ethers, Carboxlic acids, Esters	1050-1300
15.	1249.87	55.761	C-O	Alcohols, Ethers, Carboxlic acids, Esters	1050-1300
16.	1292.87	72.884	C-O	Alcohols, Ethers, Carboxlic acids, Esters	1050-1300
17.	1361.74	68.851	NO2	Nitro Compounds	1300-1370
18.	1417.68	64.723	C-H	Alkanes	1340-1470
19.	1436.97	59.046	С-Н	Alkanes	1340-1470
20.	1489.05	65.725	-	Unknown	-
21.	1506.41	66.871	-	Unknown	-
22.	1593.20	66.461	-	Unknown	-
23.	1616.35	64.515	-	Unknown	-
24.	1635.64	61.408	-	Unknown	-
25.	2665.62	88.750	-	Unknown	-
26.	2854.65	79.246	C-H	Alkanes	2850-2970
27.	2926.01	75.034	C-H	Alkanes	2850-2970

Table 3: Zone of inhibition (mm) of test bacterial strains to Piper nigrum bioactive compounds and standard antibiotics.

/ Piper nigrum Antibiotics	Bacteria							
	Staphylococcus	Escherichia	Proteus	Klebsiella	Pseudomonas			
	aureus	coli	mirabilis	pneumonia	eurogenosa			
Piper nigrum	4.00±0.31	4.90±0.13	5.00 ± 0.16	4.63±0.41	4.12±0.11			
Rifambin	1.01 ± 0.10	0.77 ± 0.41	0.98 ± 0.11	1.00 ± 0.30	1.05±0.42			
Streptomycin	0.91 ± 0.27	1.60 ± 0.29	1.90 ± 0.10	0.96 ± 0.47	0.87±0.20			
Kanamycin	0.42 ± 0.18	1.12 ± 0.46	0.40 ± 0.12	1.00 ± 0.10	0.90±0.47			
Cefotoxime	0.87 ± 0.95	0.96 ± 0.27	0.93 ± 0.25	0.92 ± 0.18	0.71±0.13			

subsequent adverse effects⁶⁻¹² Recently, biochemical activities of some important medicinal plants including Piper species and their metabolites have been described¹³⁻²⁰. Pharmacological and clinical studies have revealed that piperine has CNS depressant, antipyretic, analgesic, anti-inflammatory (Ratner et al., 1991), antioxidant, and

hepatoprotective activities^{21,22}. Studies have revealed anticonvulsant and bioavailability-enhancing properties of the drug. The fruits contain 1.0–2.5% volatile oil, 5–9% alkaloids, of which the major ones are piperine, chavicine, piperidine, and piperetine, and a resin²³. The present study involves an assessment using GC-MS and FT-IR

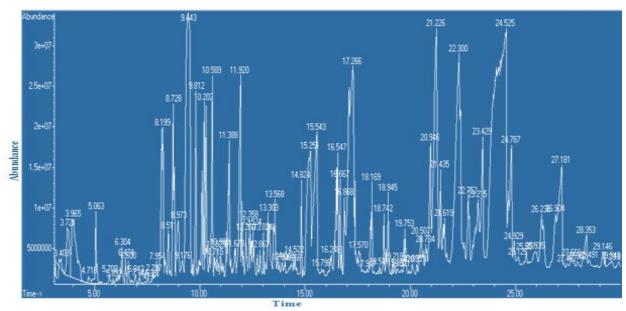


Figure 1: GC-MS chromatogram of methanolic extract of *Piper nigrum*.

spectroscopic techniques to investigate the chemical composition methanolic fruit extract of *P. nigrum*.

MATERIALS AND METHODS

Plant Material and Preparation of Extracts

P. nigrum dried fruits were purchased from local market in Hilla city, middle of Iraq. after thorough cleaning and removal foreign materials, the fruits were stored in airtight container to avoid the effect of humidity and then stored at room temperature until further use. About 30 g of the plant sample powdered were soaked in 100 mL of methanol for 16 h in a rotatory shaker^{24,25}. Whatman No.1 filter paper was used to separate the extract of plant. The filtrates were used for further phytochemical analysis. It was again filtered through sodium sulphate in order to remove the traces of moisture.

Identification of component by gas chromatography – mass spectrum analysis

The physicochemical properties of the essential oil of P. nigrum L. (Black Pepper) are presented in Table1. Interpretation of mass spectroscopy (GC-MS) was conducted using data base of the National Institute Standard and Technology (NIST) having more than 62000 patterns. The spectrum of the unknown component was compared with the spectrum of the known component stored in the NIST library. The identity of the components in the extracts was assigned by the comparison of their retention indices and mass spectra fragmentation patterns with those stored on the computer library and also with published literatures^{26,27}. The GC-MS analysis of the plant extract was made in a (Agilent 789 A) instrument under computer control at 70 eV. About 1µL of the methanol extract was injected into the GC-MS using a micro syringe and the scanning was done for 45 min. As the compounds were separated, they eluted from the column and entered a detector which was capable of creating an electronic signal whenever a compound was detected. The greater the concentration in the sample, bigger was the signal obtained which was then processed by a computer. The time from

when the injection was made (initial time) to when elution occurred is referred to as the retention time (RT). While the instrument was run, the computer generated a graph from the signal called chromatogram. Each of the peaks in the chromatogram represented the signal created when a compound eluted from the gas chromatography column into the detector. The x-axis showed the RT and the y-axis measured the intensity of the signal to quantify the component in the sample injected. As individual compounds eluted from the gas chromatographic column, they entered the electron ionization (mass spectroscopy) detector, where they were bombarded with a stream of electrons causing them to break apart into fragments. The fragments obtained were actually charged ions with a certain mass²⁸. The M/Z (mass / charge) ratio obtained was calibrated from the graph obtained, which was called as the Mass spectrum graph which is the fingerprint of a molecule. Before analyzing the extract using gas chromatography and mass spectroscopy, the temperature of the oven, the flow rate of the gas used and the electron gun were programmed initially. The temperature of the oven was maintained at 100°C. Helium gas was used as a carrier as well as an eluent. The flow rate of helium was set to 1mL per min²⁹⁻³³. The electron gun of mass detector liberated electrons having energy of about 70eV.The column employed here for the separation of components was Elite 1(100% dimethyl poly siloxane).

Fourier transform infrared spectrophotometer (FTIR) The powdered sample of *P. nigrum* specimen was treated for FTIR spectroscopy (Shimadzu, IR Affinity 1, Japan). The sample was run at infrared region between 400 nm and 4000 nm³¹.

Determination of antibacterial activity of crude bioactive compounds of Piper nigrum.

The test pathogens (*Pseudomonas aeruginosa, Klebsiella pneumoniae, E. coli,* and *Staphylococcus aureus*) were swabbed in Müller-Hinton agar plates. 60 μ L of plant extract was loaded on the bored wells. The wells were

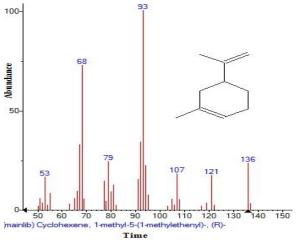


Figure 2: Structure of Cyclohexene, 1-methyl-5-(1-methylethenyl)-,(R) present in the methanolic seeds extract of Piper nigrum by using GC-MS analysis.

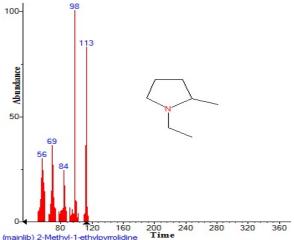


Figure 4: Structure of 2-Methyl-1-ethylpyrrolidine present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

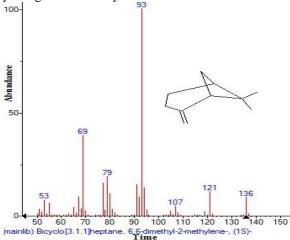


Figure 6: Structure of Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-methylene-,(1S) present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

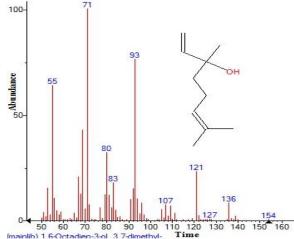


Figure 3: Structure of 1,6-Octadien-3-ol,3,7-dimethyl present in the methanolic seeds extract of Piper nigrum by using GC-MS analysis.

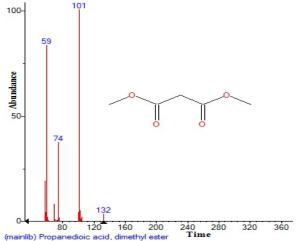


Figure 5: Structure of Propanedioic acid, dimethyl ester present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

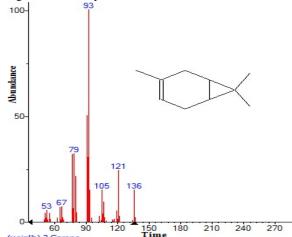


Figure 7: Structure of 3-Carene present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

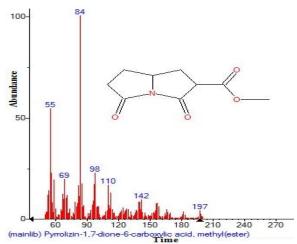


Figure 8: Structure of Pyrrolizin-1,7-dione-6-carboxylic acid, methyl(ester) present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

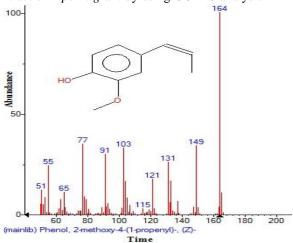


Figure 10: Structure of Phenol, 2-methoxy-4-(1-propenyl)-,(Z) present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

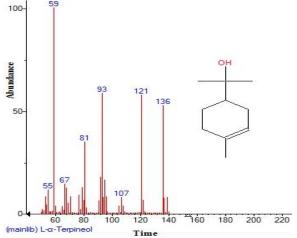


Figure 12: Structure of L- α -Terpineol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

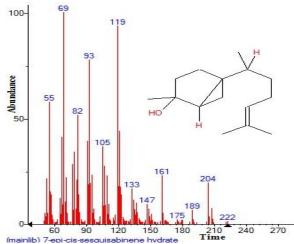


Figure 9: Structure of 7-epi-cis-sesquisabinene hydrate present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

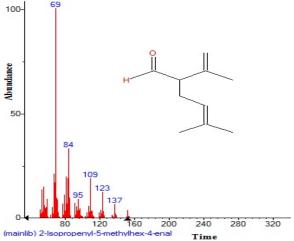


Figure 11: Structure of 2-Isopropenyl-5-methylhex-4-enal present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

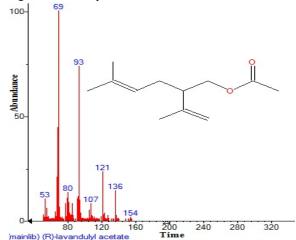


Figure 13: Structure of (R)-lavandulyl acetate present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

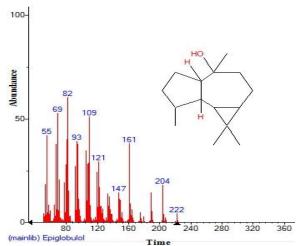


Figure 14: Structure of Epiglobulol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

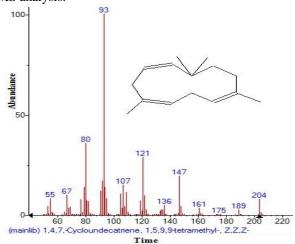


Figure 16: Structure of 1,4,7-Cycloundecatriene, 1,5,9,9-tetramethyl-,Z,Z,Z present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

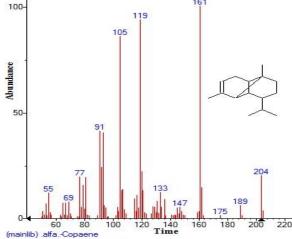


Figure 18: Structure of Alfa.Copaene present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

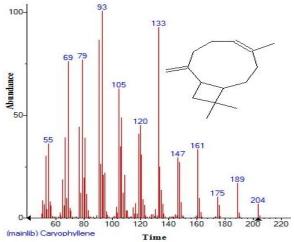


Figure 15: Structure of Caryophyllene present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

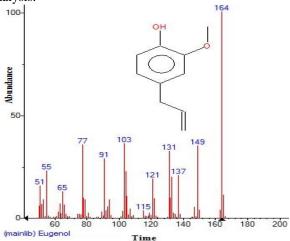


Figure 17: Structure of Eugenol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

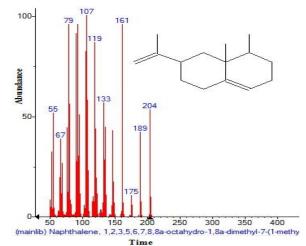


Figure 19: Structure of Naphthalene,1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methyl present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

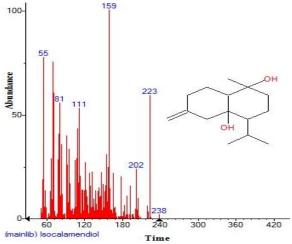


Figure 20: Structure of Isocalamendiol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

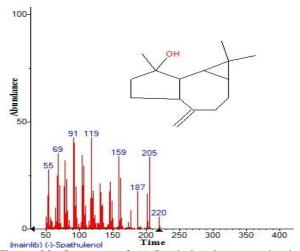


Figure 22: Structure of (-)-Spathulenol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

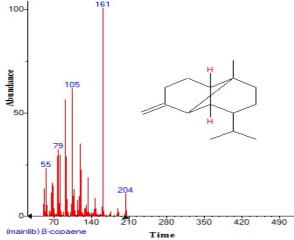


Figure 24: Structure of β-copaene present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

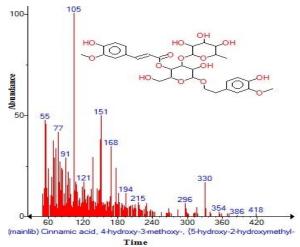


Figure 21: Structure of Cinnami acid , 4-hydroxy -3-methoxy-,{5-hydroxy-2-hydroxymethyl present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

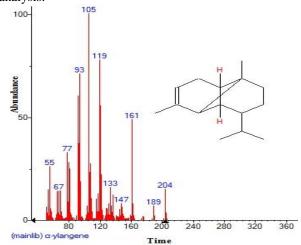


Figure 23: Structure of α - ylangene present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

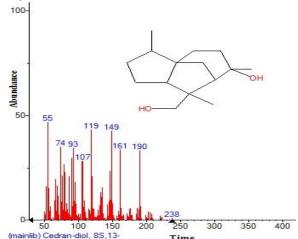


Figure 25: Structure of Cedran-diol,8S,13present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

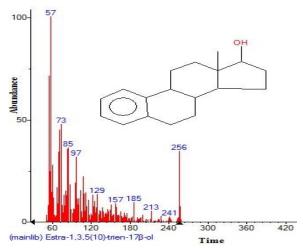


Figure 26: Structure of Estra-1,3,5(10)-trien-17ß-ol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

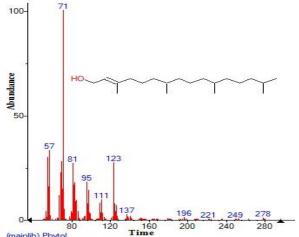


Figure 28: Structure of Phytol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

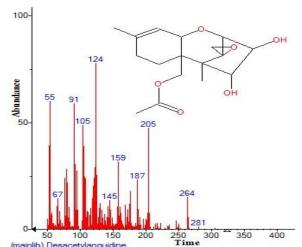


Figure 30: Structure of Desacetylanquidine present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

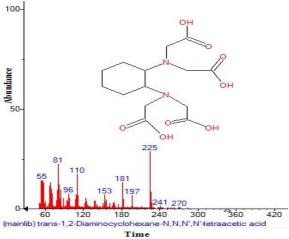


Figure 27: Structure of Trans-1,2-Diaminocyclohexane-N,N,N',N'-tetraacetic acid present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

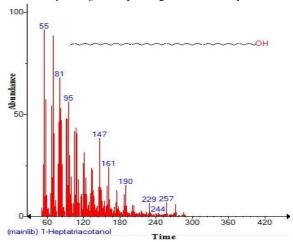


Figure 29: Structure of 1-Heptatriacotanol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

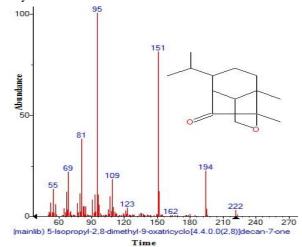


Figure 31: Structure of 5-Isopropyl-2,8-dimethyl-9-oxatricyclo[4.4.0.0.(2,8)]decan-7-one present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

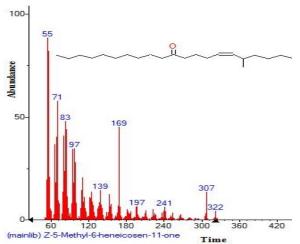


Figure 32: Structure of Z-5-methyl-6-heneicosen-11-one present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

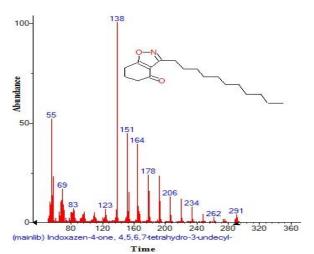


Figure 34: Structure of Indoxazin-4-one ,4,5,6,7-tetrahydro-3-undecyl present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

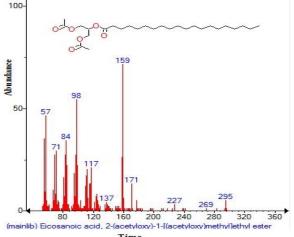


Figure 36: Structure of Eicosanoic acid , 2-(acetyloxy0-1-[(acetyloxy)methyl]ethyl ester present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

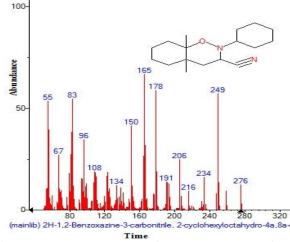


Figure 33: Structure of 2H-1,2-Benzoxazine-3-carbonitrile,2- cyclohexyloctahydro-4a,8a-d present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

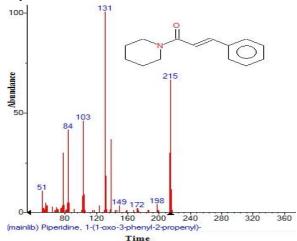


Figure 35: Structure of Piperidine,1-(1-oxo-3-phenyl-2-propenyl) present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

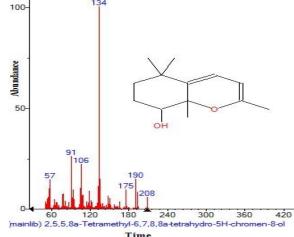


Figure 37: Structure of 2,5,5,8a-Tetramethyl-6,7,8,8a-tetrahydro-5H-chromen-8-ol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

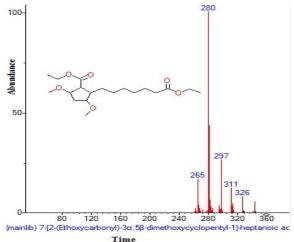


Figure 38: Structure of 7-[2-(Ethoxycarbonyl)-3α,5β-dimethoxycyclopentyl-1]-heptanoic acid present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

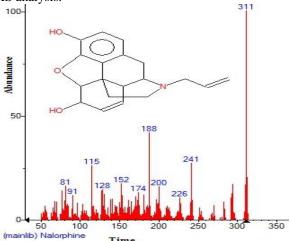


Figure 40: Structure of Nalorphine present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

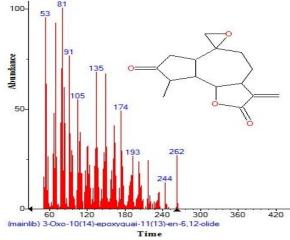


Figure 42: Structure of 3-Oxo-10(14)-epoxyguai-11(13)-en-6,12-olide present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

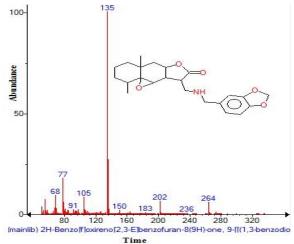


Figure 39: Structure of 2H-Benzo[f]oxireno[2,3-E]benzofuran-8,(9H)-one,9-[[(1,3-benzodio present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

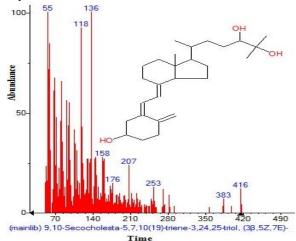


Figure 41: Structure of 9,10-Secocholesta-5,7,10(19)-triene-3,24,25-triol,(3ß,5Z,7E)present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

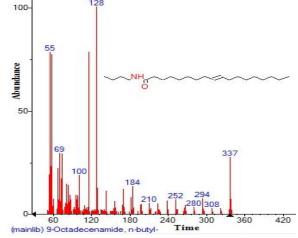


Figure 43: Structure of 9-Octadecenamide, n-butyl present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

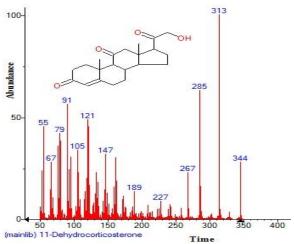


Figure 44: Structure of 11-Dehydrocorticosterone present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

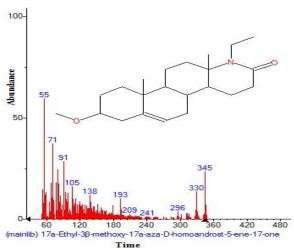


Figure 46: Structure of 17a-Ethyl-3ß-methoxy-17a-aza-D-homoandrost-5-ene-17-one present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

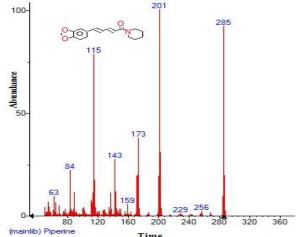


Figure 48: Structure of Piperine present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

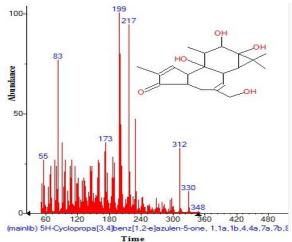


Figure 45: Structure of 5H-Cyclopropa[3,4]benz[1,2-e]azulen-5-one,1,1a,1b,4,4a,7a,7b present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

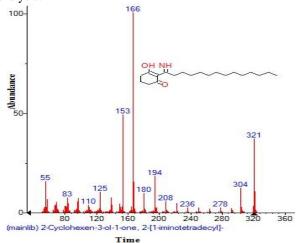


Figure 47: Structure of 2-Cyclohexen -3-ol-1-one, 2-[1-iminotetradecyl] present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

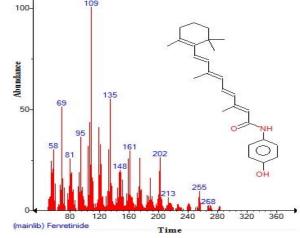


Figure 49: Structure of Fenretinide present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

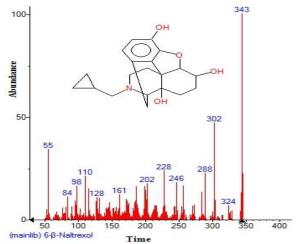


Figure 50: Structure of 6-\(\beta\)-Naltrexol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

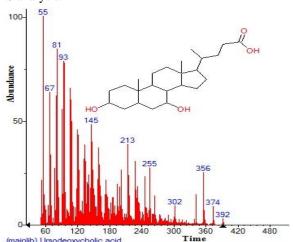


Figure 52: Structure of Ursodeoxycholic acid present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

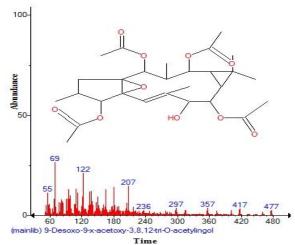


Figure 54: Structure of 9-Desoxo-9-x-acetoxy-3,8,12-tri-O-acetylingol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

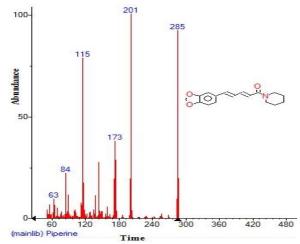


Figure 51: Structure of Piperine present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

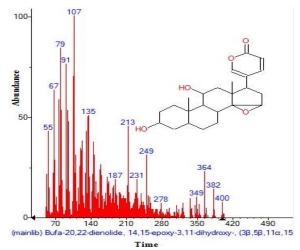


Figure 53: Structure of Bufa-20,22-dienolide m,14,15-epoxy-3,11-dihydroxy-, $(3\beta,5\beta,11\alpha,15$ present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

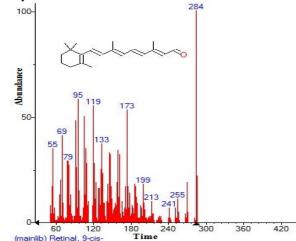


Figure 55: Structure of Retinal ,9-cis present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

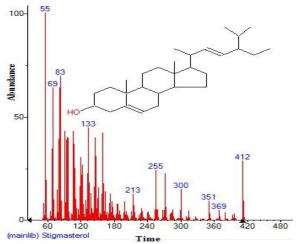


Figure 56: Structure of Stigmasterol present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

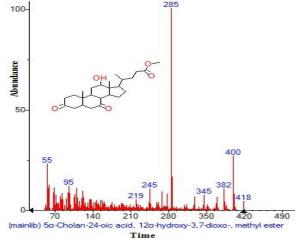


Figure 57: Structure of 5α -Cholan-24-oic acid, 12α -hydroxy-3,7-dioxo-,methyl ester present in the methanolic seeds extract of *Piper nigrum* by using GC-MS analysis.

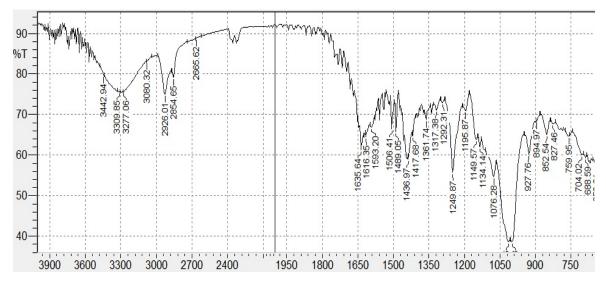


Figure 58: FT-IR profile of *Piper nigrum*.

bored in 0.5cm in diameter. The plates were incubated at 37°C for 24 h and examined. After the incubation the diameter of inhibition zones around the discs was measured.

RESULTS AND DISCUSSION

Gas chromatography and mass spectroscopy analysis of compounds was carried out in methanolic fruits extract of P. nigrum, shown in Table1. The GC-MS chromatogram of the 55 peaks of the compounds detected was shown in Figure 1. Chromatogram GC-MS analysis of the methanol extract of P. nigrum showed the presence of fifty five major peaks and the components corresponding to the peaks were determined as follows. The first set up peak were determined to be α -pinene Figure 2. The second peak indicated to be Camphene Figure 3. The next peaks considered to be Eucalyptol, 2-Methoxy-4-vinylohenol, 1-Oxaspiro [4,5] deca-3,6-diene,2,6,10,10-tetramethyl, 1-Oxaspiro [4,5]deca-3,6-diene,2,6,10,10-tetramethyl, Neocurdione, Isoaromadendrene epoxide, 1b,4a-Epoxy-2H-cyclopenta[3,4]cyclopropa[8,9] cycloundec., Cis-

Vaccenic Phenanthrenol, 4b, 5, 6, 7, 8, 8a, 9, 10acid, octahydro-4b,8,8-trimethyl-1, Galanthamine, Dibenz[a,c]cyclohexane,2,4,7-trimethoxy, 2,4a,7-Trihydroxy-1-methyl-8-methyleneqibb-3-ene. 1,10carboxylic acid, Retinoic acid, 7,8,12-Tri-O-acetyl-3-4,6-Androstadien-3β-ol-17-one, desoxy-ingol-3-one. acetate. (Figure 4-57). FTIR analysis of dry methanolic extract of Rosmarinus oficinalis leaves proved the presence of Alkenes, Aliphatic fluoro compounds, Alcohols, Ethers, Carboxlic acids, Esters and Nitro Compounds which shows major peaks at 688.59, 827.46, 927.76, 1014.56, 1249.87, 1361.74, 1417.68, 1506.41, 2665.62, 2854.65 and 2926.01 (Table 2; Figure 58). Boutekedjiret et al. (2003)³² studied the constituents of rosemary essential oil from Algeria. They reported 1, 8cineole, camphor, β-pinene, and α-Pinene as the major constituents in the oil. Viuda-Martos et al. (2007)³³ investigated chemical composition of the essential oil of anther sample of rosemary leaves from Spain. The major constituents identified were α-pinene, camphor, 1,8cineole and camphene. The main components detected in

the oils were: α -pinene, 1, 8-cineole, camphene, camphor, myrcene and broneol³⁴. GC and GC-MS analysis of oils from rosemary leave samples from India revealed the presence of camphor, 1,8-cineole and α -pinene as major constituents in the oils³⁵⁻³⁷. In this study five clinical pathogens selected for antibacterial activity namely, (staphylococcus aeureus, klebsiella pneumoniae, pseudomonas aeroginosa, E. coli. and Proteus mirabilis. Maximum zone formation against Proteus mirabilis, Table 3.

CONCLUSION

P. nigrum is native plant of Iraq. It contain chemical constitutions which may be useful for various herbal formulation as anti-inflammatory, analgesic, antipyretic, cardiac tonic and antiasthamatic.

ACKNOWLEDGEMENT

I thank Dr. Abdul-Kareem Al-Bermani, Lecturer, Department of Biology, for valuable suggestions and encouragement.

REFERENCES

- Srinivas VP, Ashok KT, Uma MS, Anuradha V, Hari B. HPLC assisted chemo biological standardization of α-glucosidase-Ienzyme inhibitory constituents from *Piper longum* Linn-An Indian medicinal plant, Journal of Ethno pharmacology. 2006; 108: 445–449.
- Nalini N, Manju V, Menon VP. Effect of spices on lipid metabolism in 1,2-dimethylhydrazine-induced rat colon carcinogenesis, J Med Food. 2006; 9(2): 237-45.
- 3. Altameme HJ, Hameed IH, Abu-Serag NA. Analysis of bioactive phytochemical compounds of two medicinal plants, *Equisetum arvense* and *Alchemila valgaris* seed using gas chromatography-mass spectrometry and fourier-transform infrared spectroscopy. Malays. Appl. Biol. 2015b; 44(4): 47–58.
- 4. Hamza LF, Kamal SA, Hameed IH. Determination of metabolites products by *Penicillium expansum* and evaluating antimicobial activity. Journal of Pharmacognosy and Phytotherapy. 2015; 7(9): 194-220
- Hameed IH, Altameme HJ, Idan SA. Artemisia annua: Biochemical products analysis of methanolic aerial parts extract and anti-microbial capacity. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(2): 1843-1868.
- Catella-Lawson F, Reilly MP, Kapoor SC, Cucchiara AJ, DeMarco S, Tournier B, Vyas SN, FitzGerald GA. Cyclooxygenase inhibitorsand the antiplatelet effects of aspirin. N. Engl. J. Med. 2001; 345: 1809–1817.
- 7. Kawano KI, Hokamura K, Kondo K, Ikeda Y, Suzuki Y, Umemura K. Thromboxane A2 synthase inhibitor enhanced antithrombotic efficacyof GPIIb— IIIa receptor antagonist without increasing bleeding. Eur. J.Pharmacol. 2001; 417: 217–222.
- 8. Hameed IH, Hamza LF, Kamal SA. Analysis of bioactive chemical compounds of *Aspergillus niger* by using gas chromatography-mass spectrometry and

- fourier-transform infrared spectroscopy. Journal of Pharmacognosy and Phytotherapy. 2015b;7(8): 132-163
- 9. Mitsuhashi M, Tanaka A, Fujisawa C, Kawamoto K, Itakura A. Necessity of thromboxane A2for initiation of platelet-mediated contact sensitivity: dual activation ofplatelets and vascular endothelial cells. J. Immunol. 2001; 166: 617–623.
- 10. Dorsam RT, Kim S, Murugappan S, Rachoor S, Shankar H, Jin J, Kunapuli SP. Differential requirements for calcium and Src family kinases in platelet GPIIb/IIIa activation and thromboxane generation downstream of different G-protein path ways. Blood. 2005; 105: 2749–2756.
- 11. Huang JS, Ramamurthy SK, Lin X, Le Breton GC. Cell signaling through thromboxane A2 receptors. Cell Signal. 2009; 16: 521–533.
- 12. Hameed IH, Hussein HJ, Kareem MA, Hamad NS. Identification of five newly described bioactive chemical compounds in methanolic extract of *Mentha viridis* by using gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy. 2015c; 7 (7): 107-125.
- 13. Nongyao S, Kitja S, Pathana P. Effects of Piper longum fruit, *Piper sarmentosum* root and *Quercus infectoria* nut gall on caecal amoebiasis in mice. Journal of Ethno pharmacology. 2004; 91: 357–360.
- 14. Kartick M, Stanely MP. Preventive effect of rutin,a bioflavonoid, on lipid peroxides and antioxidants in isoproterenol-induced myocardial infarction in rats. J.Pharmcol. 2006; 58: 701-707.
- 15. Altameme H J, Hadi MY, Hameed IH. Phytochemical analysis of *Urtica dioica* leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy. 2015a; 7(10): 238-252.
- 16. Masaya I, Nobuaki O, Satoko, O, Masaki S, Norimichi N. Piperlongumine, a constituent of Piper longum L., inhibits rabbit platelet aggregation as a thromboxane A2 receptor antagonist, European Journal of Pharmacology. 2007; 570: 38-42.
- 17. Seung WL, Young KK, Koanhoi K, Hyun SL, Jung HC, Woo SL. Alkamides from the fruits of *Piper longum* and *Piper nigrum* displaying potent cell adhesion inhibition. Bioorganic & Medicinal Chemistry Letters. 2008; 18: 4544-4546.
- 18. Hameed IH, Ibraheam IA, Kadhim HJ. Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of *Rosmarinus oficinalis* leaves. Journal of Pharmacognosy and Phytotherapy. 2015d; 7 (6): 90-106.
- 19. Jagdale SC, Kuchekar BS, Chabuskar AR, Dlokhande P, Raut CG. Anti-Oxidant activity of *piper longum* L. Int.J.Biological chemistry. 2009; 3(3): 119-125.
- 20. Al-Marzoqi AH, Hadi MY, Hameed IH. Determination of metabolites products by *Cassia angustifolia* and evaluate antimicobial activity. Journal of Pharmacognosy and Phytotherapy. 2016; 8(2): 25-48.

- 21. Al-Marzoqi AH, Hameed IH, Idan SA. Analysis of bioactive chemical components of two medicinal plants (*Coriandrum sativum* and *Melia azedarach*) leaves using gas chromatography-mass spectrometry (GC-MS). African Journal of Biotechnology. 2015; 14(40): 2812-2830.
- 22. Hussein AO, Mohammed GJ, Hadi MY, Hameed IH. Phytochemical screening of methanolic dried galls extract of *Quercus infectoria* using gas chromatography-mass spectrometry (GC-MS) and Fourier transform-infrared (FT-IR). Journal of Pharmacognosy and Phytotherapy. 2016; 8(3): 49-59.
- 23. Park I, Lee S, Shin S, Park J, Young-Joon A. Larvicidal activity of isobutyl amides in *Piper nigrum* fruits against three mosquito species. Journal of Agriculture and Food Chemistry. 2002; 50: 1866–1870.
- 24. Altameme HJ, Hameed IH, Idan SA, Hadi MY. Biochemical analysis of *Origanum vulgare* seeds by fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy. 2015c; 7(9): 221-237.
- 25. Jasim H, Hussein AO, Hameed IH, Kareem MA. Characterization of alkaloid constitution and evaluation of antimicrobial activity of *Solanum nigrum* using gas chromatography mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy. 2015; 7 (4): 56-72.
- 26. Hussein HJ, Hadi MY, Hameed IH. Study of chemical composition of *Foeniculum vulgare* using Fourier transform infrared spectrophotometer and gas chromatography mass spectrometry. Journal of Pharmacognosy and Phytotherapy. 2016; 8(3): 60-89.
- 27. Hadi MY, Mohammed GJ, Hameed IH. Analysis of bioactive chemical compounds of *Nigella sativa* using gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy. 2016; 8(2): 8-24.
- 28. Mohammed GJ, Al-Jassani MJ, Hameed IH. Antibacterial, Antifungal Activity and Chemical analysis of *Punica grantanum* (Pomegranate peel) using GC-MS and FTIR spectroscopy. International Journal of Pharmacognosy and Phytochemical Research. 2016; 8(3):480-494.

- 29. Hussein HM, Hameed IH, Ibraheem OA. Antimicrobial Activity and spectral chemical analysis of methanolic leaves extract of *Adiantum Capillus-Veneris* using GC-MS and FT-IR spectroscopy. International Journal of Pharmacognosy and Phytochemical Research. 2016; 8(3): 369-385.
- 30. Boutekedjiret C, Bentahar F, Belabbes R, Bessiere J. Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Fragr. J. 2003; 18: 481–484.
- 31. Viuda-Martos M, Yolanda R, Juana F, José P. Chemical Composition of the Essential Oils Obtained From Some Spices Widely Used in Mediterranean Region. Acta Chim. Slov. 2007; 54: 921–926.
- 32. Jamshidi R, Afzali Z, Afzali D. Chemical Composition of Hydrodistillation Essential Oil of Rosemary in Different Origins in Iran and Comparison with Other Countries. American-Eurasian J. Agric. & Environ. Sci. 2009; 5(1): 78-81.
- 33. Ram SV, Ur Rahman L, Sunita M, Rajesh KV Amit C, Anand S. Changes in essential oil content and composition of leaf and leaf powder of *Rosmarinus officinalis*. CIM-Hariyali during storage. Maejo International Journal of Science and Technology. 2011; 5(02): 181-19.
- 34. Kadhim MJ, Mohammed GJ, Hameed IH. In *vitro* antibacterial, antifungal and phytochemical analysis of methanolic fruit extract of *Cassia fistula*. Oriental Journal of Chemistry. 2016; 32(2): 10-30.
- 35. Shareef HK, Muhammed HJ, Hussein HM, Hameed IH. Antibacterial effect of ginger (*Zingiber officinale*) roscoe and bioactive chemical analysis using gas chromatography mass spectrum. Oriental Journal of Chemistry. 2016; 32(2): 20-40.
- 36. Al-Jassaci MJ, Mohammed GJ, Hameed IH. Secondary Metabolites Analysis of *Saccharomyces cerievisiae* and Evaluation of Antibacterial Activity. International Journal of Pharmaceutical and Clinical Research. 2016; 8(5): 304-315.
- 37. Aronow WS. Management of peripheral arterial disease of the lowerextremities in elderly patients. J. Gerontol. 2004; 59: 172–177.