Research Article

Characterization of Bioactive Chemical Compounds from *Aspergillus terreus* and Evaluation of Antibacterial and Antifungal Activity

Ghaidaa Jihadi Mohammed¹, Mohanad Jawad Kadhim², Haider Mashkoor Hussein¹

¹College of Science, Al-Qadisiya University, Iraq ²Department of Genetic Engineering, Al-Qasim Green University, Iraq

Available Online: 9th June, 2016

ABSTRACT

The aim of this research was analysis of the bioactive chemical products and evaluation of antibacterial and antifungal activity of *Aspergillus terreus*. Bioactives (chemical compounds often referred to as secondary metabolites) were analyzed using gas chromatography-mass spectroscopy (GC-MS) technique, then the in vitro antibacterial and antifungal activity of the methanolic extract was evaluated. Forty seven bioactive compounds were identified in the methanolic extract of *Aspergillus terreus*. Crude extract of *Gramineae poaceae* plant was very highly active (7.47 ± 0.14) mm. The results of antibacterial activity produced by *Aspergillus terreus* showed that the volatile compounds were highly effective to suppress the growth of *Streptococcus pneumonia*. *Aspergillus terreus* produce many important secondary metabolites with high biological activities. Based on the significance of employing bioactive compounds in pharmacy to produce drugs for the treatment of many diseases, the purification of compounds produced by *Aspergillus terreus* species can be useful.

Keywords: Aspergillus terreus, Antibacterial activity, Antifungal activity, GC/MS, Secondary metabolites.

INTRODUCTION

Secondary metabolites is a prerequisite for the development of noval pharmaceuticals and this is an especially urgent task in the case of antibiotics due to the rapid spreading of bacterial resistance and the emergence of multiresistant pathogenic strains, which severe clinical problems in the treatment of infectious disease. Many fungi are parasites on plants, animals (including humans), and even other fungi. The organism most often used for Itaconic acid (IA) production is Aspergillus terreus, grown under phosphate-limited conditions¹⁻³, although some species of the plant pathogenic fungal genus Ustilago, a basiodiomycete, are also known to produce IA during fermentation. Many fungi are parasites on plants, animals (including humans), and even other fungi. Some fungi can cause serious diseases in humans, several of which may be fatal if untreated. These include aspergilloses, candidoses and coccidioidomycosis⁴⁻⁸. The pharmaceutical industry has become increasingly interested in screening fungi for novel antibiotics and other secondary metabolites. Many fungi produce biologically active compounds, several of which are toxic to animals or plants. These are called mycotoxins. Particularly relevant to humans are mycotoxins produced by molds which cause food spoilage⁹⁻¹⁰. New secondary metabolites available from microorganisms may be used to optimize their availability by fermentation for further research and also for production in the pharmaceutical industry. The objective of this study was screening of secondary metabolites and evaluation of antimicrobial activity.

MATERIALS AND METHODS

Growth conditions and determination of metabolites

Aspergillus terreus was isolated from dried fruit and the pure colonies were selected, isolated and maintained in potato dextrose agar slants¹¹⁻¹². Spores were grown in a liquid culture of potato dextrose broth (PDB) and incubated at 25°C in a shaker for 16 days at 130 rpm. The extraction was performed by adding 25 ml methanol to 100 ml liquid culture in an Erlenmeyer flask after the infiltration of the culture. The mixture was incubated at 4°C for 10 min and then shook for 10 min at 130 rpm. Metabolites was separated from the liquid culture and evaporated to dryness with a rotary evaporator at 45°C. The residue was dissolved in 1 ml methanol, filtered through a 0.2 µm syringe filter, and stored at 4°C for 24 h before being used for GC-MS. The identification of the components was based on comparison of their mass spectra with those of NIST mass spectral library as well as on comparison of their retention indices either with those of authentic compounds or with literature values¹³⁻¹⁴.

Spectral analysis of bioactive chemical compounds using gas chromatography-mass spectrometry (GC/MS)

Analysis was conducted using GC-MS (Agilent 789 A) equipped with a DB-5MS column (30 m×0.25 mm i.d., 0.25 um film thickness, J&W Scientific, Folsom, CA). The oven temperature was programmed as for the previous analysis. Helium was used as the carrier gas at the rate of 1.0 mL/min. Effluent of the GC column was introduced directly into the source of the MS via a transfer line (250oC). Ionization voltage was 70 eV and ion source temperature was 230oC. Scan range was 41- 450 amu. The

S No.	Phyto-chemical compound	RT (min)	Mol. Wt.	Exact Mass	Chemical structure	MS Fragment- ions
1.	Tungsten, pentacarbonyl(4,5-diethyl- 2,2,2-trimethyl-1-phenyl- 1-	3.144	612	612.088947		59,73,97,13 5,292,383,4 68,498,526, 556
2.	Hematoporphyrin	3.224	598	598.279137		53,67,108,2 37,450
3.	β—N-Acetylneuraminic acid , methyl ester-2- methyl-7,9-methyl-bor	3.276	505	505.233465		59,75,103,1 39,196,227, 259,298,34 3,387,446
4.	Tungsten,dicarbonyl-(n-4- pinocarvone)[1,2- bis(dimethylphosphi	3.333	540	540.11795		53,69,108,1 35,240,287, 332390,438 ,,482,540
5.	Nickel,[2,8,12,18- tetraethyl-3,7,13,17- tetramethyl-21H,23H-por	3.356	534	534.22934		108,230,26 7,534
6.	Copper,[2,8,12,18- tetraethyl-3,7,13,17- tetramethyl-21H,23H-po	3.407	539	539.223595		108,207,27 0,332,402,5 39
7.	2H-Pyran,2- (2,5hexadiynyloxy)tetrahy dro-	3.465	178	178.09938		51,65,77,14 1,170
8.	Lycoxanthin	3.516	552	552.433117	prpopopodododadad	55,91,119,1 71,331,428, 534
9.	1-Bromo-ethanesulfinyl)- ethane	3.539	183	183.955748	s S	534 50,63,78,10 7,184
10.	β Carotene	3.648	536	536.4382	• Asperadaday	55,69,105,1 45,197,268,

Table 1: Major bioactive chemical compounds identified in methanolic extract of Aspergillus terreus.

Tuble 1	. Mujor biodetrive enermedited	inpounds id	entinea m	пеннинопе ех	and of hisperginus terretus.	
S	Phyto-chemical compound	RT (min)	Mol. Wt.	Exact Mass	Chemical structure	MS
No.						Fragr
						ions
						378,3

Table 1: Major bioactive chemical compounds identified in methanolic extract of Aspergillus terreus.

No.				Linuct		Fragment- ions
11.	Methanone ,1,3dithian-2- ylphenyl-	3.676	224	224.032957		378,397,44 4,536 51,65,69,75 ,77,81,85,9 1,105,119
12.	1-Diisopropylsilyloxy-10- undecene	3.728	284	284.253542		61,75,89,21 3,241
13.	2-Butanol , 3-chloro-,(R*,R*)-	3.808	108	108.034192 6	HO C	50,55,63,73 ,79,85,93,1 05
14.	8,11-Octadecadiynoic acid , methyl ester	3.859	290	290.22458	y	55,78,91,10 5,119,133,1 45,162,173,
15.	6-Acetyl-β-d-mannose	4.203	222	222.073953	O OH	205,233 60,81,97,10 9,126,144,1 92
16.	Thieno[2,3-c]furan-3- carbonitrile,2-amino-4,6- dihydro-4,4,6,6-tetra	4.306	222	222.082684 5		60,77,96,12 1,165,207,2 22
17.	17-Octadecynoic acid	4.357	280	280.24023	«	55,67,81,95 ,109,123,13 7,163,185,2
18.	1-Butan-3-one,1-(2- carboxy-4,4- dimethylcyclobutenyl)-	4.437	194	194.094295		06,233,261 56,65,79,91 ,105,133,15 1,179,194
19.	3-(3-Carboxy-4- hydroxyphenyl)-D-alanine	4.649	225	225.063723	OH NH2 OH	51,77,106,1 33,151,208, 222
20.	Oxime-, methoxy-phenyl-	4.678	151	151.063329		55,73,105,1 33,151
21.	Cyclopentaneacetaldehyde , 2-formyl-3-methyl-α- methylene-	4.838	166	166.09938		55,81,95,10 9,151,165

S No.	Phyto-chemical compound	RT (min)	Mol. Wt.	Exact Mass	Chemical structure	MS Fragment- ions
22.	13-Hexyloxacyclotridec- 10-en-2-one	4.941	280	280.24023		55,67,81,98 ,109,137,15 1,166,182,2 10,262,280
23.	6-epi-shyobunol	4.992	222	222.198365		55,67,81,93 ,109,161,20 7,222
24.	Urea , N,N'-bis(2- hydroxyethyl)-	5.204	148	148.084792		61,81,132,1 46
25.	5-Methyl-6- phenyltetrahydro-1,3- oxazine-2-thione	5.175	207	207.071785		57,77,91,11 7,132,147,1 74,207
26.	N-Benzyl-N'-(1- benzylamino-2,2,2,- trichloroethyl)-p- tolylcarboxam	5.152	459	459.10358		51,65,91,10 6,118,164,2 23
27.	Thieno[2,3-c]furan-3- carbonitrile,2-amino-4,6- dihydro-4,4,6,6-	5.313	222	222.082684 5		60,96,121,1 65,207,222
28.	1-Propyl-3,6- diazahomoadamantan-9-ol	5.387	210	210.173213	Л	58,72,82,13 6,181,193,2 10
29.	Stearic acid , 2-(9- octadecenyloxy)ethyl ester . (Z)-	5.467	578	578.563797	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57,69,83,12 3,207,250,2 67,281,311,
30.	17a-Allyl-3β-methoxy- 17a-aza-D-homoandrost- 5-ene-17-one	5.599	357	357.266779		329 55,71,91,10 5,150,205,2 53,310,342, 357
31.	1,8-Diethyl-3,6- diazahomoadamantan-9-ol	5.708	224	224.188864	N N N	58,72,96,11 0,136,152,1 66,180,195, 224
32.	α-D-Glucopyranoside,O- α-D-glucopyranosyl- (1.fwdarw.3)-β-	7.373	504	504.169035		60,73,85,97 ,113,126,14 5,191

Table 1: Major bioactive chemical compounds identified in methanolic extract of Aspergillus terreus.

ОН ОН

S No.	: Major bioactive chemical con Phyto-chemical compound				Chemical structure	MS Fragment- ions
33.	Lactose	7.710	342	342.11621		60,73,97,12 6,163,207
34.	1-[[3-Methyl-3- phenyl]butyryl-4-[5- phenyl-4-oxo-2-oxazolin- 2-yl]	7.951	405	405.205242		56,69,91,10 5,119,153,1 77,202,245, 287,337,40 5
35.	Ethyl iso-allocholate	8.162	436	436.318874		55,69,81,95 ,145,213,25 3,400,418
36.	9,10-Secocholesta- 5,7,10(19)-triene3,24,25- triol,(3β,5Z,7E)-	8.425	416	416.329004	HO CH CH	55,69,91,11 8,136,158,1 76,189,207, 221,253,38 3,416
37.	5,6,7,8,9,10-Hexahydro-9- methyl-spiro[2H-1,3- benzoxazine-	8.660	253	253.150035	NH NH	55,69,81,97 ,158,176,22 0,253
38.	Ergosta-5,22-dien-3- ol,acetate,(3β,22E)-	8.820	440	440.36543	i	55,67,91,14 5,213,255,2 81,327,380
39.	Desulphosinigrin	9.455	279	279.077658		60,73,85,10 3,127,145,1 63,213,262
40.	Pentaerythritol,bis-O-(9- borabicyclo[3.3.1]non-9- yl)-di-O-methyl-	9.879	404	404.326921	DH DB D D B C	55,67,85,10 9,127,143,1 81,223,258, 293,347,40 4
41.	Acetamide , N-methyl-N- [4-[4-fluoro-1- hexahydropyridyl]-2- butynyl	11.252	226	226.148142		4 58,82,94,12 4,168,211
42.	1,4-Diacetyl-3- acetoxymethyl-2,5- methylene-l-rhamnitol	11.464	318	318.131468		57,103,115, 145,191,23 3,263,318

Table 1: Major bioactive chemical compounds identified in methanolic extract of <i>Aspergillus terreus</i> .
--

S	Phyto-chemical compound	RT (min)	Mol. Wt.	Exact Mass	Chemical structure	MS
No.						Fragment-
						ions
43.	Glycyl-D-asparagine	12.253	189	189.074956	OH	55,72,100,1
					•	13,154
					NH2 HN	
					NH2	
44.	Cyclopropanebutanoic	13.283	374	374.318481	>>>> >>>>	55,74,95,12
	acid, 2-[[2-[[2-[(2-				~~~~~~~~~~ <mark> </mark>	1,135,149,1
	pentylcyclopropyl)methyl					61,199,227,
						270,298,33
45.	Estra-1,3,5(10)-trien-17β-	13.678	256	256.182714	он	4 57,73,85,97
45.	ol	15.078	230	230.182714		,129,157,18
					ΓŢ]	5,213,241,2
						56
46.	Benzenemethanol,4-	14.708	297	297.132471		57,65,77,91
	[(ethylpropyl)amino]-2-					,104,131,17
	methyl-3,5-dinitro-					8,208,268,2
						97
					ОН	
47.	[1,1'-Bicyclopropyl]-2-	15.343	322	322.28718	<u>о</u> Л	55,73,81,95
	octanoic acid, 2'-hexyl-					,109,123,13
	,methyl ester				V	7,165,192,2
						24,291,322

Table 1: Major bioactive chemical compounds identified in methanolic extract of Aspergillus terreus.

23 pt 24 pt 25 pt 25

Figure 1: Morphological characterization of *Aspergillus terreus* colony

components were identified by comparing their retention times to those of authentic samples of WILEY MASS SPECTRAL DATA BASE Library¹⁵⁻¹⁶.

Determination of antibacterial and antifungal activity **Streptococcus** pneumonia, Escherichia coli, *Staphylococcus* aureus, Proteus mirabilis and Staphylococcus epidermidis were swabbed in Muller-Hinton agar plates. 90µl of fungal extracts was loaded on the bored wells. The wells were bored in 0.5cm in diameter. The plates were incubated at 37C° for 24 hrs and examined¹⁷. After the incubation the diameter of inhibition zones around the discs was measured. Aspergillus terreus

Figure 2: GC-MS chromatogram of methanolic extract of *Aspergillus terreus*.

isolate was suspended in potato dextrose broth and diluted to approximately 105 colony forming unit (CFU) per ml. They were "flood inoculated onto the surface of Potato dextrose agar and then dried. Standard agar well diffusion method was followed¹⁸⁻²⁰. Five-millimeter diameter wells were cut from the agar using a sterile cork-borer, and 25 μ l of the samples solutions were delivered into the wells. The plates were incubated for 48 h at room temperature. Antimicrobial activity was evaluated by measuring the zone of inhibition against the test microorganisms. Methanol was used as solvent control. Amphotericin B and fluconazole were used as reference antifungal agent²¹. The

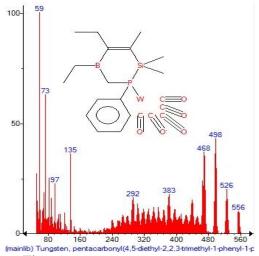
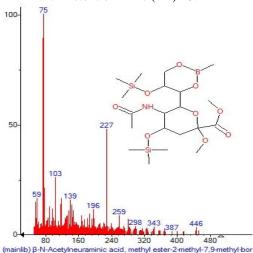



Figure 3: Mass spectrum of Tungsten, pentacarbonyl(4,5-diethyl-2,2,2-trimethyl-1-phenyl-1with Retention Time (RT)= 3.144

(mainlib) B-N-Acetylneuraminic acid, methyl ester-2-methyl-7,9-methyl-bor Figure 5: Mass spectrum of β —N-Acetylneuraminic acid , methyl ester-2-methyl-7,9-methyl-bor with Retention Time (RT)= 3.276

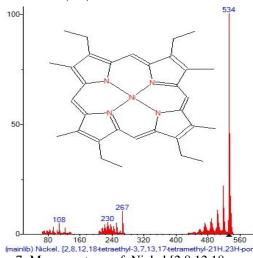


Figure 7: Mass spectrum of Nickel,[2,8,12,18tetraethyl-3,7,13,17-tetramethyl-21H,23H-por with Retention Time (RT)= 3.356

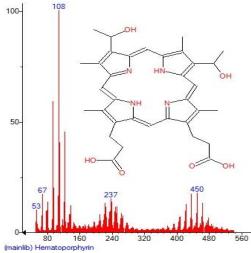


Figure 4: Mass spectrum of Hematoporphyrin with Retention Time (RT)= 3.224

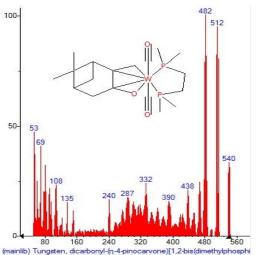


Figure 6: Mass spectrum of Tungsten, dicarbonyl-(n-4pinocarvone)[1,2-bis(dimethylphosphi with Retention Time (RT)= 3.333

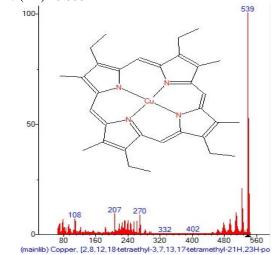


Figure 8: Mass spectrum of Copper,[2,8,12,18-tetraethyl-3,7,13,17-tetramethyl-21H,23H-po with Retention Time (RT)= 3.407

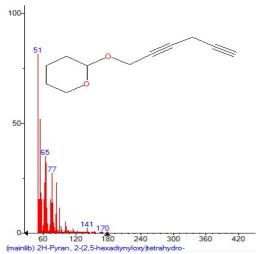


Figure 9: Mass spectrum of 2H-Pyran,2-(2,5hexadiynyloxy)tetrahydro- with Retention Time (RT)= 3.465

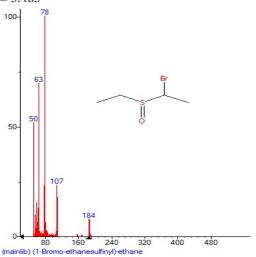


Figure 11: Mass spectrum of 1-Bromo-ethanesulfinyl)ethane with Retention Time (RT)= 3.539

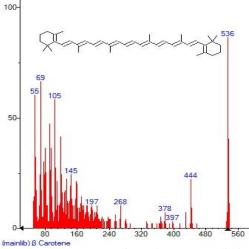


Figure 13: Mass spectrum of Methanone ,1,3dithian-2ylphenyl- with Retention Time (RT)= 3.676

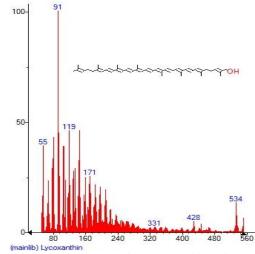


Figure 10: Mass spectrum of Lycoxanthin with Retention Time (RT)= 3.516

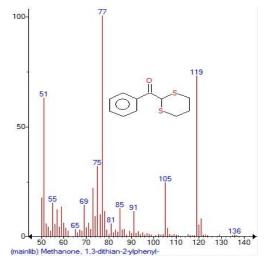


Figure 12: Mass spectrum of β Carotene with Retention Time (RT)= 3.648

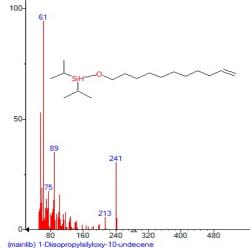


Figure 14: Mass spectrum of 1-Diisopropylsilyloxy-10undecene with Retention Time (RT)= 3.728

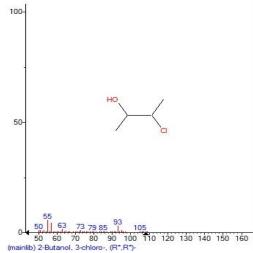


Figure 15: Mass spectrum of 2-Butanol , 3-chloro-, (R^*,R^*) - with Retention Time (RT)= 3.808

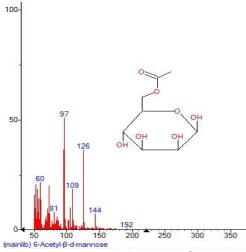


Figure 17: Mass spectrum of 6-Acetyl- β -d-mannose with Retention Time (RT)= 4.203

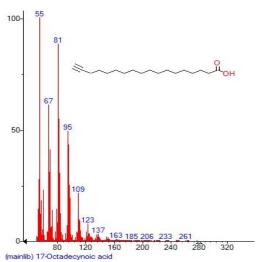


Figure 19: Mass spectrum of 17-Octadecynoic acid with Retention Time (RT)=4.357

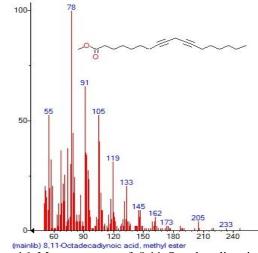


Figure 16: Mass spectrum of 8,11-Octadecadiynoic acid, methyl ester with Retention Time (RT)= 3.859

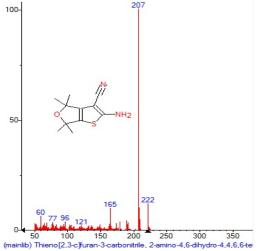


Figure 18: Mass spectrum of Thieno[2,3-c]furan-3carbonitrile,2-amino-4,6-dihydro-4,4,6,6-tetra with Retention Time (RT)= 4.306

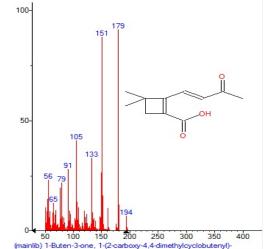


Figure 20: Mass spectrum of 1-Butan-3-one,1-(2-carboxy-4,4-dimethylcyclobutenyl)- with Retention Time (RT)= 4.437

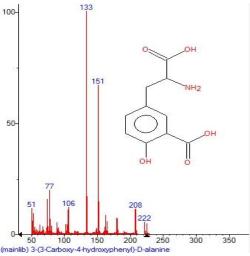


Figure 21: Mass spectrum of 3-(3-Carboxy-4hydroxyphenyl)-D-alanine with Retention Time (RT)= 4.649

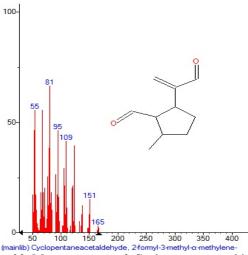


Figure 23: Mass spectrum of Cyclopentaneacetaldehyde , 2-formyl-3-methyl- α -methylene- with Retention Time (RT)= 4.838

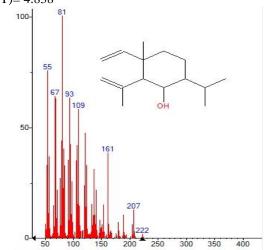


Figure 25: Mass spectrum of 6-epi-shyobunol with Retention Time (RT)= 4.992

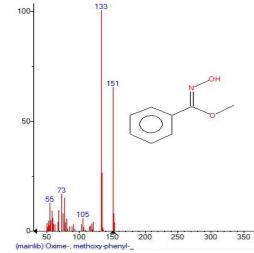


Figure 22: Mass spectrum of Oxime-, methoxy-phenylwith Retention Time (RT)= 4.678

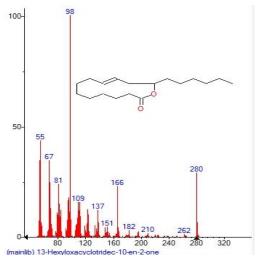


Figure 24: Mass spectrum of 13-Hexyloxacyclotridec-10en-2-one with Retention Time (RT)= 4.941

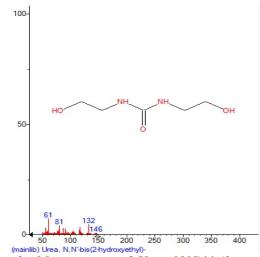


Figure 26: Mass spectrum of Urea, N,N'-bis(2-hydroxyethyl)- with Retention Time (RT)= 5.204

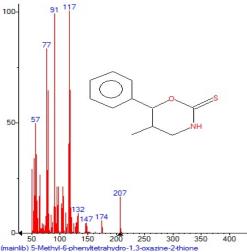


Figure 27: Mass spectrum of 5-Methyl-6phenyltetrahydro-1,3-oxazine-2-thione with Retention Time (RT)= 5.175

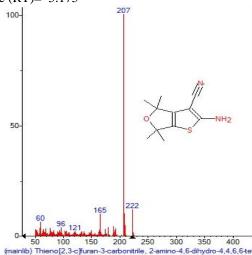


Figure 29: Mass spectrum of Thieno[2,3-c]furan-3carbonitrile,2-amino-4,6-dihydro-4,4,6,6- with Retention Time (RT)= 5.313



Figure 31: Mass spectrum of Stearic acid , 2-(9-octadecenyloxy)ethyl ester . (Z)- with Retention Time (RT)=5.467

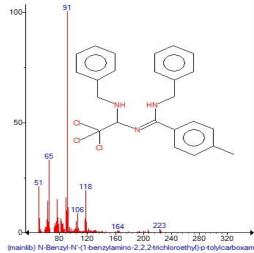


Figure 28: Mass spectrum of N-Benzyl-N'-(1benzylamino-2,2,2,-trichloroethyl)-p-tolylcarboxam with Retention Time (RT)= 5.152

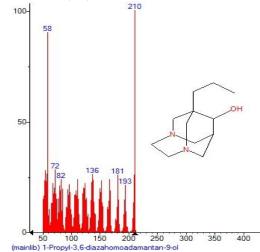


Figure 30: Mass spectrum of 1-Propyl-3,6diazahomoadamantan-9-ol with Retention Time (RT)= 5.387

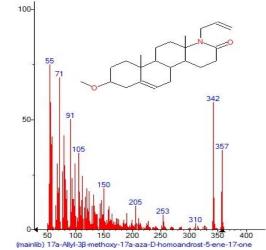


Figure 32: Mass spectrum of 17a-Allyl-3 β -methoxy-17aaza-D-homoandrost-5-ene-17-one with Retention Time (RT)= 5.599

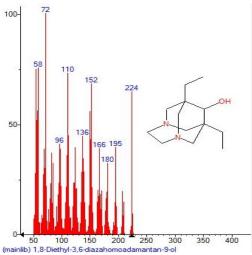


Figure 33: Mass spectrum of 1,8-Diethyl-3,6diazahomoadamantan-9-ol with Retention Time (RT)= 5.708

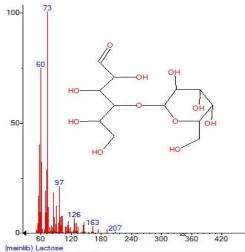


Figure 35: Mass spectrum of Lactose with Retention Time (RT)=7.710

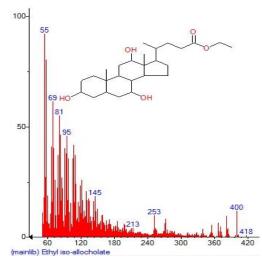


Figure 37: Mass spectrum of Ethyl iso-allocholate with Retention Time (RT)= 8.162

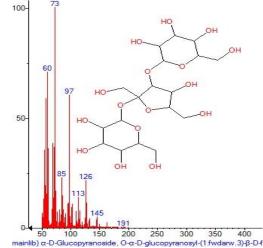


Figure 34: Mass spectrum of α -D Glucopyranoside,O- α -D-glucopyranosyl-(1.fwdarw.3)- β - with Retention Time (RT)= 7.373

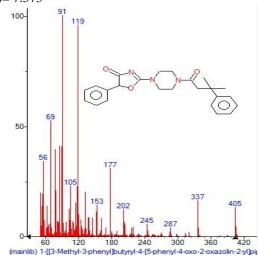


Figure 36: Mass spectrum of 1-[[3-Methyl-3phenyl]butyryl-4-[5-phenyl-4-oxo-2-oxazolin-2-yl] with Retention Time (RT)= 7.951

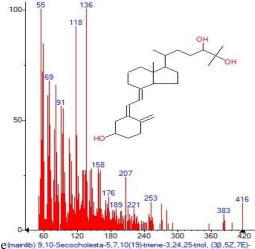


Figure 38: Mass spectrum of 9,10-Secocholesta-5,7,10(19)-triene3,24,25-triol,(3 β ,5Z,7E)- with Retention Time (RT)= 8.425

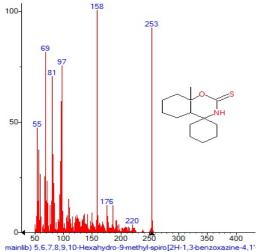


Figure 39: Mass spectrum of 5,6,7,8,9,10-Hexahydro-9methyl-spiro[2H-1,3-benzoxazine- with Retention Time (RT)= 8.660

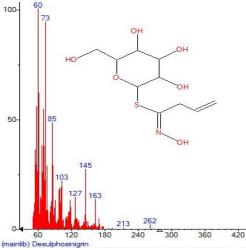


Figure 41: Mass spectrum of Desulphosinigrin with Retention Time (RT)= 9.455

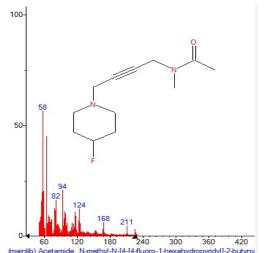


Figure 43: Mass spectrum of Acetamide, N-methyl-N-[4-[4-fluoro-1-hexahydropyridyl]-2-butynyl with Retention Time (RT)= 11.252



Figure 40: Mass spectrum of Ergosta-5,22-dien-3ol,acetate,(3β ,22E)- with Retention Time (RT)= 8.820

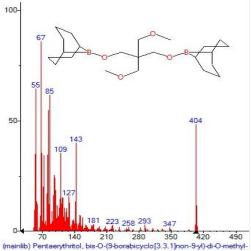


Figure 42: Mass spectrum of Pentaerythritol,bis-O-(9borabicyclo[3.3.1]non-9-yl)-di-O-methyl- with Retention Time (RT)= 9.879

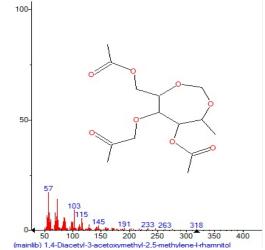


Figure 44: Mass spectrum of 1,4-Diacetyl-3acetoxymethyl-2,5-methylene-l-rhamnitol with Retention Time (RT)= 11.464

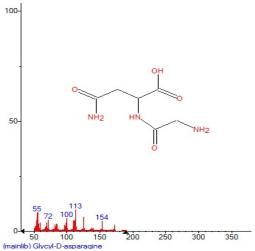


Figure 45: Mass spectrum of Glycyl-D-asparagine with Retention Time (RT)= 12.253

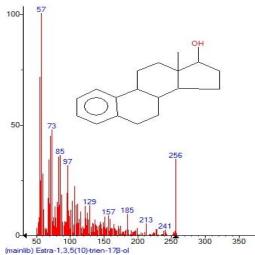


Figure 47: Mass spectrum of Estra-1,3,5(10)-trien-17 β ol with Retention Time (RT)= 13.678

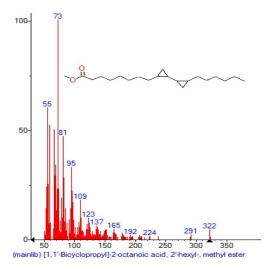


Figure 49: Mass spectrum of [1,1'-Bicyclopropyl]-2octanoic acid , 2'-hexyl-,methyl ester with Retention Time (RT)= 15.343

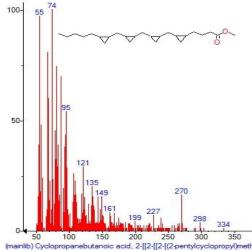
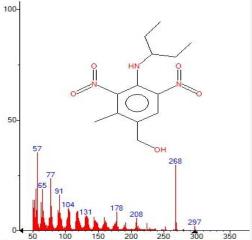



Figure 46: Mass spectrum of Cyclopropanebutanoic acid , 2-[[2-[[2-[(2-pentylcyclopropyl)methyl with Retention Time (RT)= 13.283

(mainlib) Benzenemethanol, 4-[(1-ethylpropyt)amino]-2-methyl-3,5-dinitro Figure 48: Mass spectrum of Benzenemethanol,4-[(ethylpropyt)amino]-2-methyl-3,5-dinitro- with Retention Time (RT)= 14.708

tests were carried out in triplicate. The antifungal activity was evaluated by measuring the inhibition-zone diameter observed after 48 h of incubation. Data were analyzed using analysis of variance (ANOVA) and differences among the means were determined for significance at P < 0.05 using Duncan's multiple range test (by SPSS software) Version 9.1

RESULTS AND DISCUSSION

Morphological, Microscopical and microscopical characteristics of fungal strains were determined using specific media light and compound microscope (fig. 1). The 400ml of fermentation broth (PDA broth) which contain 200 μ l of the standardized fugal suspensions were used to inoculate the flasks and incubated at 37°C on a shaker at 90 rpm for 7 days. After fermentation, the secondary metabolites were produced by isolated microorganisms. Gas chromatography and mass spectroscopy analysis of compounds was carried out in methanolic extract of *Aspergillus terreus*, shown in (table 1). The GC-MS chromatogram of the thirty one peaks of

Fungal products		2	Zone of inhibition (mm)				
Antibiotics	Bacteria							
-	Streptococcus pneumonia	Escherichia coli	Staphylococcus aureus	Proteus mirabilis	Staphylococcus epidermidis			
Fungal products	6.32±0.013	2.99±0.300	6.09±0.200	6.22±0.210	5.00±0.203			
Streptomycin	1.08 ± 0.200	0.97±0.116	2.08 ± 0.233	3.04±0.261	0.98±0.166			
Kanamycin	1.02 ± 0.180	1.00 ± 0.190	2.08±0.236	1.00 ± 0.100	1.82 ± 0.200			
Rifambin	2.00 ± 0.202	2.00 ± 0.103	1.99 ± 0.182	0.964 ± 0.233	2.08 ± 0.240			
Cefotoxime	0.97±0.211	1.51±0.270	1.94 ± 0.100	1.08 ± 0.272	2.08 ± 0.290			

Table 2: Bioactivity of the methanolic crude extract of Aspergillus terreus and standard antibiotics against the five tested pathogens.

Table 3: Zone of inhibition (mm) of test different bioactive compounds and standard antibiotics of plants to Aspergillus terreus.

<u>S.</u>	Plant	Zone of
No.	1 faitt	inhibition
110.		(mm)
1.	Piper nigrum (Crude)	6.11±0.20
2.	Zingiber officinale (Crude)	5.00±0.22
2. 3.	Gramineae poaceae (Crude)	7.97±0.14
3. 4.	Nerium olender (Alkaloids)	4.21 ± 0.21
 5.	Ricinus communis (Alkaloids)	2.94 ± 0.20
5. 6.	Datura stramonium(Alkaloids)	3.56±0.21
0. 7.	Linum usitatissimum (Crude)	4.97±0.15
<i>8</i> .	Anastatica hierochuntica (Crude)	5.11 ± 0.19
9.	Linum usitatissimum (Crude)	4.37±0.14
10.	Cassia angustifolia (Crude)	6.35±0.26
11.	Euphorbia lathyrus (Crude)	5.77±0.28
12.	Rosmarinus oficinalis (Crude)	5.48±0.16
13.	Mentha viridis (Crude)	5.59±0.15
14.	Artemisia annua (Crude)	5.73±0.29
15.	Quercus infectoria (Crude)	6.79±0.11
16.	Citrullus colocynthis (Crude)	4.21±0.21
17.	Althaea rosea (Crude)	5.99±0.16
18.	Coriandrum sativum (Crude)	5.82 ± 0.19
19.	Melia azedarach (Crude)	3.98±0.26
20.	Origanum vulgare (Crude)	6.09 ± 0.29
21.	Urtica dioica (Crude)	3.78 ± 0.15
22.	Equisetum arvense (Crude)	5.69 ± 0.14
23.	Foeniculum vulgare (Crude)	3.72±0.19
24.	Nigella sativa (Crude)	4.55±0.35
25.	Ocimum basilicum (Crude)	4.67±0.19
26.	Punica granatum (Crude)	6.00 ± 0.25
27.	Cinnamomum zeylanicum	4.72 ± 0.20
	(Crude)	
28.	Amphotericin B	7.55 ± 0.24
29.	Fluconazol	7.98±0.16
30.	Control	0.00

the compounds detected was shown in (fig. 2). The First set up peak were determined to be 1,2-cis-1,5-trans-2,5dihydroxy-4-methyl-1-(1-htdroxy-1-isopropyl) cy, (fig. 3). The second peak indicated to be 2-Furancarboxaldehyde, 5-methyl, (fig. 4). The next peaks considered to be 2(5H)-Furanone, 6-Hydroxymethyl-5methyl-bicyclo[3.1.0]hexan-2-one, D-Glucose,6-O-α-D-2-(3-Hydroxy-propyl)-cyclohexanegalactopyranosyl, 9-Oxa-bicyclo[3.3.1]nonane-1,4-diol, 1,3-dione,

Benzenemethanol,2-(2-aminopropoxy)-3-methyl, 1.2-Cyclopentanedione,3-methyl, α-D-Glucopyranoside, O-α-D-glucopyranosyl-(1.fwdarw.3)-\beta-D-fruc, 1-Nitro-2acetamido-1,2-dideoxy-d-mannitol, Desulphosinigrin, Orcinol, Bicyclo[2.2.1]heptane-2-carboxylic acid isobutyl-amide, 2H-Oxecin-2-one.3.4.7.8.9.10hexahydro-4-hydroxy-10-methyl-.[4, 2H-Pyran,tetrahydro-2-(12-pentadecynyloxy), Maltol, 2-Tridecyl-5-(acetylamino)tetrahydro-γ-pyrone, Cycloundecanone D-Glucose, 6-O-a-Doxime, galactopyranosyl, 6-Acetyl-β-d-mannose, 5-Hydroxymethylfurfural, 1-Gala-1-ido-octonic lactone, Pterin-6-carboxylic acid, Uric acid, Acetamide, N-methyl -N-[4-[2-acetoxymethyl-1-pyrrolidyl]-2-butynyl], 1-(+)-Ascorbic acid 2,6-dihexadecanoate, D-fructose, diethyl mercaptal, pentaacetate, 2-Bromotetradecanoic acid, Octadecanal, 2 -bromo, L-Ascorbic acid . 6octadecanoate. 18,19-Secoyohimban-19oic acid,16,17,20,21-tetradehydro-16. (fig. 5-49). Many compounds are identified in the present study. Some of them are biological compounds with antimicrobial activities. Many fungi are parasites on plants, animals (including humans)⁴. We have previously characterized the same in Aspergillus niger²¹ and Penicillium expansum fungi¹⁰. Some fungi can cause serious diseases in humans, several of which may be fatal if untreated²². Fungal spores also cause allergies, and can evoke allergic reactions²³. The attention of natural product chemists and pharmaceutical companies, at present, is focused firmly on anticancer drugs, with several promising sponge-derived substances in clinical and preclinical trials. Cultivation of spongeassociated microorganisms that produce bioactive substances is the most direct method for large-scale production of these chemicals^{24,25}. As has been previously mentioned many fungi produce biologically active compounds, several of which are toxic to animals or plants²⁶. Since growth under different culture conditions may influence which metabolites are produced, the use of many different media and conditions should help to maximize the chemical diversity from a given microorganism²⁷⁻³⁷. The present study of bioactive secondary metabolites revealed that Aspergillus terreus as a source for the production of effective metabolites. These metabolites can be further exploited for the biotechnological applications in medicine and agriculture. Antibacterial and antifungal activity

Clinical pathogens selected for antibacterial activity namely, Streptococcus pneumonia, Escherichia coli, Staphylococcus aureus, Proteus mirabilis, Staphylococcus maximum zone formation epidermidis, against Streptococcus pneumonia (6.32±0.013) mm, (table 2). In agar well diffusion method the selected medicinal plants were effective against Aspergillus terreus, Table 3. Gramineae poaceae was very highly active (7.47±0.14) mm against Aspergillus terreus. Aspergillus terreus was found to be sensitive to all test medicinal plants and mostly comparable to the standard reference antifungal drug Amphotericin B and fluconazole to some extent. Previous studies Tayung et al., (2007)³⁴ showed that selection of different potential areas were important activity for isolation of different types of potent antibiotic producing endophytic fungi. A. terreus bioactivities recorded as 14.9 and 26.5 lg/ml against V. ordalli and V. angularuim respectively³⁰. Because of the emergencies of multi-drug resistant pathogens, there are basic challenges for effective treatment for infectious disease. Thus, due to the burden for high frequency for multidrug resistant pathogens in the world, there has been increasing interest for searching effective antibiotics from soil actinomycetes in diversified ecological niches³⁰. Kiran et al., (2007) ³⁵ showed the marine fungus Aspergillus ustus MSF3 showed antimicrobial activity in fermentation medium at temperature of 20_C°.

ACKNOWLGEMENTS

I sincerely wish to thank Dr. Abdul-Kareem for providing me the opportunity to work on this project. I am thankful to you for helping me through the various analysis stages, and for providing helpful criticism and feedback throughout the writing process.

REFERENCES

- Willke T, Vorlop KD. Biotechnological production of itaconic acid. Appl Microbiol Biotechnol. 2001; 56: 289–95.
- 2. Hameed IH, Hussein HJ, Kareem MA, Hamad NS. Identification of five newly described bioactive chemical compounds in methanolic extract of *Mentha viridis* by using gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy 2015; 7(7):107-125.
- 3. Al-Marzoqi AH, Hadi MY, Hameed IH. Determination of metabolites products by *Cassia angustifolia* and evaluate antimicobial activity. Journal of Pharmacognosy and Phytotherapy. 2016; 8(2): 25-48.
- 4. Hube B. From commensal to pathogen: stage- and tissue-specific gene expression of *Candida albicans*. Current Opinion in Microbiology 2004; 7(4):336–341.
- Nielsen K, Heitman J. Sex and virulence of human pathogenic fungi. Advances in Genetics 2007; 57: 143– 173.
- 6. Simon NB, Denk U, Pöll V, Rid R and Breitenbach M. The spectrum of fungal allergy. International Archives of Allergy and Immunology 2008; 145(1):58–86.
- 7. Altameme HJ, Hameed IH, Abu-Serag NA. Analysis of bioactive phytochemical compounds of two medicinal

plants, *Equisetum arvense* and *Alchemila valgaris* seed using gas chromatography-mass spectrometry and fourier-transform infrared spectroscopy. Malays Appl Biol 2015;44(4):47–58

- 8. Hameed IH, Ibraheam IA, Kadhim HJ. Gas chromatography mass spectrum and fourier-transform infrared spectroscopy analysis of methanolic extract of *Rosmarinus oficinalis* leaves. Journal of Pharmacognosy and Phytotherapy 2015;7(6):90-106.
- 9. Abe K, Gomi K, Hasegawa F, Machida M. Impact of *Aspergillus oryzae* genomics on industrial production of metabolites. Mycopathologia 2006;162(3):143–153.
- Hamza LF, Kamal SA, Hameed IH. Determination of metabolites products by *Penicillium expansum* and evaluating antimicobial activity. Journal of Pharmacognosy and Phytotherapy 2015;7(9):194-220.
- 11. Usha NS, Masilamani SM. Bioactive compound produced by streptomycin strain. International journal of pharmacy and pharmaceutical science 2013;5(1): 0975-14.
- 12. Hameed IH, Hamza LF, Kamal SA. Analysis of bioactive chemical compounds of *Aspergillus niger* by using gas chromatography-mass spectrometry and fourier-transform infrared spectroscopy. Journal of Pharmacognosy and Phytotherapy 2015;7(8):132-163.
- 13. Altameme HJ, Hadi MY, Hameed IH. Phytochemical analysis of *Urtica dioica* leaves by fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy 2015;7(10):238-252.
- 14. Jasim H, Hussein AO, Hameed IH, Kareem MA. Characterization of alkaloid constitution and evaluation of antimicrobial activity of *Solanum nigrum* using gas chromatography mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy 2015;7(4):56-72.
- 15. Hussein HM, Hameed IH, Omar AI. Antimicrobial activity and spectral chemical analysis of methanolic leaves extract of *Adiantum capillus-veneris* using GC-MS and FT-IR spectroscopy 2016;8(3).
- 16. Altameme HJ, Hameed IH, Idan SA, Hadi MY. Biochemical analysis of *Origanum vulgare* seeds by fourier-transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Journal of Pharmacognosy and Phytotherapy 2015;7(9):221-237.
- 17. Anupama M, Narayana KJ, Vijayalakshmi M. Screening of streptomyces perpuofucus for antimicrobial metabolites. Res journal of microbiology 2007; 2:992-994.
- 18. Rajasekar T, Balaji S, Kumaran S. Isolation and characterization of marine fungi metabolites against clinical pathogens.asian pacific journal of tropical disease 2012;S387-S392.
- 19. Tabaraie B, Ghasemian E, Tabaraie T. Comparitive evolution of cephalosphrinc production in solid state fermentation and submerged liquid culture. Journal of microbial biotechnology food science 2012;2(1):83-94.
- 20. Gebreselema G, Feleke M, Samuel S, Nagappan R. Isolation and characterization of potencial antibiotic producing actinomycetes from water and sediments of

lake Tana, Ethiopa. Asian pacific journal of Tropical biomedicine 2013;3(6):426-435.

- 21. Anesini C, Perez C. Screening of plants used in Argentine folk medicine for antimicrobial activity. J. Ethnopharmacol 1993; 39:119-128.
- 22. Brakhage AA. Systemic fungal infections caused by *Aspergillus* species: epidemiology, infection process and virulence determinants. Current Drug Targets. 2005; 6(8):875–886.
- 23. Wang E, Lew K, Casciano CN, Clement RP and Johnson WW. Interaction of Common Azole Antifungals with P Glycoprotein. Antimicrob Agents Chemother 2002;46 (1):160–165.
- 24. Haefner B. Drugs from the deep:marine natural products as drug candidate. Drug Discovery Today 2003; 8:536-544.
- 25. Lipton AP, Shine S. Mariculture of marine sponges for drug development:bioactivity potentials of cultured sponges, Callyspongia subarmigera (Ridley) and Echinodictyum gorgonoides (Dendy). Marine Fisheries Information Service T&E Ser 2009; 202:7-10.
- 26. Yuen JW and Gohel MD. Anticancer effects of *Ganoderma lucidum*: a review of scientific evidence. Nutrition and Cancer 2005;53(1):11–17.
- 27. Hadi MY, Mohammed GJ, Hameed IH. Analysis of bioactive chemical compounds of *Nigella sativa* using gas chromatography-mass spectrometry. Journal of Pharmacognosy and Phytotherapy. 2016; 8(2): 8-24.
- 28. Hussein AO, Mohammed GJ, Hadi MY, Hameed IH. Phytochemical screening of methanolic dried galls extract of *Quercus infectoria* using gas chromatography-mass spectrometry (GC-MS) and Fourier transform-infrared (FT-IR). Journal of Pharmacognosy and Phytotherapy. 2016; 8(3): 49-59.
- 29. Mayer AM, Hamann MT. Marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous

mechanisms of action. Comp Biochem Physio 2005; 140:265-286.

- 30. Meenupriya J, Thangaraj M. Isolation and molecular characterization of bioactive secondary metabolites from *Callyspongia* spp. associated fungi. Asian Pacific Journal of Tropical Medicine 2010;3(9):738-740.
- 31. Hussein HJ, Hadi MY, Hameed IH. Study of chemical composition of *Foeniculum vulgare* using Fourier transform infrared spectrophotometer and gas chromatography mass spectrometry. Journal of Pharmacognosy and Phytotherapy. 2016; 8(3): 60-89.
- 32. Kadhim MJ, Mohammed GJ, Hameed IH. In *vitro* antibacterial, antifungal and phytochemical analysis of methanolic fruit extract of *Cassia fistula*. Oriental Journal of Chemistry. 2016;32(2): 10-30.
- 33. Shareef HK, Muhammed HJ, Hussein HM, Hameed IH. Antibacterial effect of ginger (*Zingiber officinale*) roscoe and bioactive chemical analysis using gas chromatography mass spectrum. Oriental Journal of Chemistry. 2016;32(2): 20-40.
- 34. Tayung K, Jha DK, Deka DC. Isolation and identification of antimicrobial agentproducing bacterium from Taxus baccata rhizoaphere antagonistic against clinically significant microbes. Original article 2007;47:317-322.
- 35. Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomas TA, Rajeetha RT, Natarajaseenivasan K. Optimization and production of a biosurfactant from the spongeassociated marine fungus Aspergillus ustus MSF3. Colloids Surf B Biointerfaces 2009;73(2):250–256.
- 36. Mohammed GJ, Al-Jassani MJ, Hameed IH. Antibacterial, Antifungal Activity and Chemical analysis of *Punica grantanum* (Pomegranate peel) using GC-MS and FTIR spectroscopy. International Journal of Pharmacognosy and Phytochemical Research 2016;8(3):480-494.
- 37. Al-Jassani MJ, Mohammed GJ, Hameed IH. Secondary Metabolites Analysis of *Saccharomyces cerievisiae* and Evaluation of Antibacterial Activity. International Journal of Pharmaceutical and Clinical Research. 2016;8(5): 304-315.