ISSN: 0975-4873

Research Article

Qualitative and Quantitative Screening of *Syzygium aromaticum* (Myrtaceae) and Evaluation of Anti-Hyperglycemic Effect

Md Arifur Rahman Chowdhury^{1*}, Manirujjaman^{1,3}, Moumita Basak^{1,2}, Md Habibur Rahman¹, Shapna Sultana¹

¹Department of Pharmacy, Southeast University, Banani, Dhaka, Bangladesh. ²Department of Pharmacy, State University of Bangladesh, Dhaka, Bangladesh. ³Faculty of Health, School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia.

Available Online: 12th July, 2016

ABSTRACT

The purpose of the present study was to trace out the presence of phytochemicals by in -vitro qualitative and quantitative screening methods and evaluate the anti-hyperglycemic effect of *Syzygium aromaticum* (Myrtaceae) on swiss albino mice. By performing qualitative screening of *Syzygium aromaticum* (SA_f) we confirmed the presence of phytochemicals. In quantitative screening, *in vitro* antioxidant potential, total antioxidant, total reducing power capacity and total phenolic content investigated and subsequent to evaluate the anti-hyperglycemic activity. The plant extract (SA_f) at the doses of 200 and 400 mg/kg body weight was orally administered for studying anti-hyperglycemic effect in alloxan-induced swiss albino mice. During 4-days of the study period in comparison with reference drug vildagliptin (50 mg/kg). In DPPH free radical scavenging assay found IC₅₀ values of SA_f 13.204 µg/ml, total antioxidant of SA_f as 356.5 mg/g equivalent of ascorbic acid, indicate potent phenolic content. Antioxidant study and quantification of phenolic compound of SA_f, the extracts revealed that they have high antioxidant capacity. Furthermore, by comparing glucose level with the standard drug with SA_f (8.35±2.07 and 8.77±1.71) mmol/L, the result showed that SA_f able to reduce blood glucose level with prolong dose administration. The present study suggests that methanolic extract of flower buds of *Syzygium aromaticum* (SA_f) could be used in managing oxidative stress and hyperglycemic condition.

Keywords: Antioxidant, Total Phenolic content, Reducing power capacity, *Syzygium aromaticum as* (SA_f), Anti-hyperglycemic test.

INTRODUCTION

In a normal cellular metabolism, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced in routine manner. They have power over to defense against pathogens to on cellular signal transduction within low to moderate concentration¹.Excessive production of ROS and RNS on one side during of oxidative stress and a deficiency of enzymatic and non-enzymatic antioxidant defense system on the other, resulting in degradation of, proteins, lipids, cellular components, DNA, and carbohydrates. Currently oxidative stress is suggested as underlying mechanism diabetes and diabetic complications². A demoralizing illness with momentous morbidity and mortality, which has increased gradually worldwide³. For this instance, recent research searching superiors remedy as safe and natural antidiabetic and antioxidative plant products as extensive traditional medical treatment⁴. Even considering chemo preventive actions and costs effectiveness, herbs serve little or no toxicity during long-term oral administration and are relatively available at large scale, collectively encourage populations to use more herbs species traditionally⁵. The chemical and biological diversity of nature is vast enough to provide

extra ordinary resources for discovery of disease remedy. When a plant is preferred as 'medicinal', it is implied that the assumed plant which, in one or more of its appendage, contains chemical substances that can be used for therapeutic purpose or which is a precursor for synthesis of useful drugs^{6,7}. In Asian subcontinent, country like Bangladesh indigenous plant marked as medication of all diseases, locally named as "Kobiraji Ousodh". In this connection Syzygium aromaticum (SAf) selected as common traditional recommendation and were subjected for studying their anti-hyperglycemic and oxidative stress inhibitory effect. Syzygium aromaticum, locally known as "lobongo" lavanga (Sanskrit) or laung, (family-Myrtaceae) is a bushy, evergreen tree with a medium-sized crown, growing 8-20 meters tall native to the Maluku Islands in Indonesia, and are commonly used as a spice, throughout the year it commercially harvested in Bangladesh, Indonesia, India, Madagascar, Zanzibar, Pakistan, Sri Lanka, and Tanzania .Its vast range of pharmacological activities has been well-researched and includes the treatment of analgesic, anesthetic effects^{8,9}. Even the study found that eugenol component of Syzygium aromaticum (SAf) possesses greater antipyretic properties

than acetaminophen¹⁰. It is a remarkably versatile molecule incorporated as a functional ingredient that has shown bacterio-static and bactericidal/ germicidal effect on wide range of microorganism¹¹⁻¹⁴. Antifungal properties of (SA_f) has also been reported¹⁵⁻²⁰. In a research showed that, Syzygium aromaticum (SAf) reduced levels of cytochrome P450 enzymes which specify the hepatodetoxification character of it^{21.} It also referred as vasorelaxant effects²². By considering all potent remedial properties, it also includes the anticancer properties²³. At this juncture we studied the methanolic extract of Syzygium aromaticum (SA_f) for its qualitative and quantitative measurement of phytochemicals constituent and antidiabetic effects.

MATERIALS AND METHODS

Collection of the plant parts

The fresh dried flower buds of *Syzygium aromaticum* (SA_f) were collected from a local savory spice shop, Kawran Bazaar, Dhaka, Bangladesh in November 2012. The collected dried flower buds were primarily identified by assistant professor, Israt Jahan Bulbul, department of Pharmacy, Southeast University, Banani, and finally identified by the taxonomist of the Bangladesh national herbarium, Mirpur, Dhaka, Bangladesh and a voucher specimen was deposited in the herbarium unit.

Drying, Pulverization, Preservation of plant parts

The collected dried flower buds were washed with fresh water to avoid undesirable dirt and then cut into small pieces and dried for two weeks. The entire dried flower buds were ground into a coarse powder with the help of a suitable grinder machine and passing through sieve no 40, in pharmaceutical technology lab, Southeast University, Dhaka and finally stored in an airtight container, and kept in a cool, dark, and dry place until analysis commenced.

Chemicals and reagents

All chemicals and drugs were obtained commercially and were of analytical grade. Mercuric –Potassium Iodide TS, ferric chloride, lead acetate –Analytical Grade, DPPH (Sigma Chemical Co., USA.), Alloxan (Fluka, Germany), ammonium molybdate (Merck, Germany), sodium phosphate (BDH, England), potassium ferricyanide K₃ [Fe(CN)₆], Trichloroacetic acid (CCl₃ COOH), Folin– Ciocalteu reagent, GA [C₆ H₂ (OH)₃ COOH], ascorbic acid (AA) and Vildagliptin 50mg/tablet (Novartis) and glucose estimation kit (Human, Germany).

Instruments

HACH DR 4000U UV-visible spectrophotometer equipped with quartz cells of 1-cm light path used to determine the molecular absorption spectra and absorbance at specific wavelengths.

Experimental Animals

The swiss albino mice of either sex weighing (27-35g) were used to conduct the research and procured from the animal research branch of the International Centre for Diarrhoeal Disease and Research, Bangladesh (ICDDRB). They were kept in standard husbandry conditions (temperature 23 ± 2 C relative humidity 55 ± 10 and 12 light and 12-hour dark cycle). The animals were fed with commercial diet pellets and water ad libitum. The animals

were allowed to acclimatize to the atmosphere for 7 days prior to experimentation session. Animals were kept fasting overnight but allowed free access to water. Experiments on animals were performed in accordance with guidelines of the institutional animal ethics committee, Southeast University, Banani Dhaka, Bangladesh.

Ethical approval

The guidelines followed for animal experiment were accepted by ICDDRB which were approved by the institutional animal ethical committee²⁴.

Extraction of the Plant Material

By using soxhlet apparatus about 187 gm/each of dried plant material was refluxed with methanol, aqueous solvent and chloroform. The vapor flows through a coil where they condense back to liquid which is then collected in the receiving vessel. The whole mixture was successively filtered through a piece of clean, white cotton material and Whatman filter paper (Bibby RE200, Sterilin Ltd., UK).

Assay of Extractive values of plant sample

The extractive rate or the yield percentage of the plant sample is calculated before and after the extraction process using the formula

Extract yield % = $(W1/W2) \times 100$

Where,

W1 = Net weight of powder in grams after extraction and, W2= Total weight of powder in grams taken for extraction *Qualitative Screening*

Test for Alkaloids

Mayer's reagent is an alkaloidal precipitating reagent used for the detection of alkaloids in natural products. Mayer's reagent (Mercuric –Potassium Iodide TS) is freshly prepared by dissolving a mixture of mercuric chloride (1.358 g) in 60mL of water and Dissolve 5g of potassium iodide in 10 ml of water and mix and dilute with water up to (100.0 ml). Most alkaloids are precipitated from neutral or slightly acidic solution by Mayer's reagent (potassiomercuric iodide solution) to give a cream colored precipitate^{25,26}.

Test for Phenol

Ferric chloride Test: To 3 ml of extract, 3 ml of 5% w/v ferric chloride solution was added. The blue – black color indicates the presence of tannins and phenols. Lead acetate Test: To 3ml of extract, 3 ml of lead acetate solution was added. The occurrence of white precipitates indicates the presence of tannins and phenols.

Test for flavonoids

Sodium hydroxide test: About 5 mg of the compound is dissolved in water, warmed and filtered. 10% aqueous sodium hydroxide is added to 2 ml of this solution. This produces a yellow coloration. A change in color from yellow to colorless on addition of dilute hydrochloric acid is an indication for the presence of flavonoids²⁷.

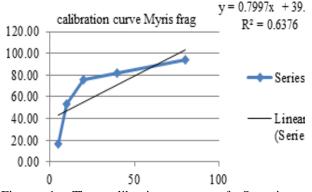
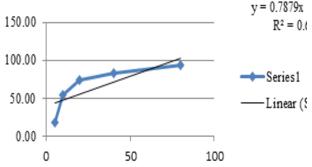
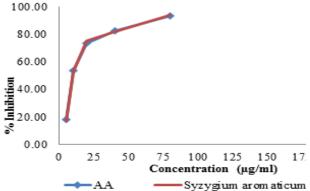
Quantitative Analysis

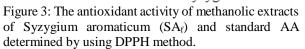
Antioxidant activity measured by DPPH (1, 1-diphenyl-2picrylhydrazyl) Free Radical Scavenging Assay

Antioxidants are suppressor of Free radicals or enable to donate hydrogen. In a chemical reaction with DPPH, Antioxidants stabilize the free radical and reduced to the

Table 1: Extractive Values in Different Solvent.
--

Type of extract	Yield (% w/w)
Methanol	27.89
Aqueous	17.04
Chloroform	12.83


Figure 1: The calibration curve of Syzygium aromaticum for calculating IC_{50} Values.

Calibration Curve of Ascorbic Acid

DPPH-H. As a Consequence; the absorbance has decreased from the DPPH radical to the DPPH-H form. The degree of yellowing indicates the scavenging potential of the antioxidant (Hydrogen donating Capacity) compounds²⁸. The scavenging reaction between (DPPH) and plant Extract [an antioxidant (H-A)] can be written as:

(DPPH) + (H-A) -----DPPH-H + (A) (Purple) (Extract) (Yellow)

The antioxidant effects of *Syzygium aromaticum* (SA_f) was performed according to the method of serial dilution method (Braca) by using DPPH radical scavenging method²⁹. 1 ml of this solution (Freshly prepared solution of DPPH (0.004% w/v) in methanol) was added to 3 ml of extract's solution at diverse concentrations (5, 10, 25 and 50 µg/ml). After 20 min, absorbance was measured at 517 nm. Ascorbic Acid was used as a reference standard. The radical scavenging activity (RSA) or percentage inhibition was evaluated by comparing the values of absorbance for the investigational samples and control following the equation asindicated^{30,31}.

Percentage of inhibition = $[(A_0 - A_1) / A_0] \ge 100$

Where, A_0 = Absorbance of the control; A_1 = Absorbance of the plant extract/ standard

IC₅₀ value was calculated from the equation of line obtained by plotting a graph of concentration ($\mu g/ml$) versus % inhibition³².

Total Antioxidant activity test (TAC)

The total antioxidant activity (TAC) or ORAC (oxygen radical absorbance capacity) is a quantitative process to investigate the reduction reaction rate between antioxidant, oxidant and molybdenum ligand. It involves in thermally generating auto-oxidation during delayed incubation period at higher temperature. The assay is based on the reduction of Mo (VI)–Mo (V) by the extract and subsequent formation of a green phosphate/Mo (V) complex at acidic pH exclusive of induction of free metal ions solution³³.

The following equation: used to determine the total antioxidant activity is expressed as the number of equivalents of AA

 $\mathbf{A} = (\mathbf{C} \mathbf{x} \mathbf{V})/\mathbf{m}$

A = Total content of antioxidant compounds, mg/g plant extract, in Ascorbic acid

C= the concentration of ascorbic acid established from the calibration curve, $mg\!/ml$

V = the volume of extract, ml; m = the weight of pure plant methanolic extract, g.

Reducing power assay

For the measurement of the reductive ability, transformation of fe^{3+} to fe^{2+} was investigated in the presence of extract like the antioxidant activity, the reducing power of *Syzygium aromaticum* (SA_f) increased with increasing concentration of the sample. Potassium Ferri-cyanide + Ferric chloride -----→Potassium Ferro cyanide + ferrous chloride. The reducing power of *Syzygium aromaticum* was determined according to the method previously described by Oyaizu³⁴. Increased absorbance of the reaction mixture indicated increased reducing power. Ascorbic acid was used as the standard. Phosphate buffer (pH 6.6) was used as blank solution. The absorbance of the final reaction mixture of two parallel experiments was taken and is expressed as mean ± standard deviation.

Total Phenolic content test

The content of total phenolic compounds in plant methanolic extracts was determined by folin-ciocalteu

Test for	Performed Test	Methanol	Aqueous	Chloroform
Alkaloid	Mayer Regent Test	+++	++	+-
Phenol	Ferric Chloride Test	+++	++	++
	Lead acetate Test			
Flavonoids	Sodium hydroxide test	+++	++	++

Table 2: List of phytochemicals tests performed

Table 3: The % of inhibition of methanolic extracts of Syzygium aromaticum (SA_f).

Conc.	Abs 1	Abs 2	Abs 3	%	of Inhibiti	on	Avg %	SEM	IC_{50}
0	1.750	1.757	1.749	0.000	0.000	0.000	0.00	0.00	
5	1.437	1.454	1.490	17.886	17.245	14.808	16.65	0.94	
10	0.821	0.826	0.829	53.086	52.988	52.601	52.89	0.15	13.20400501
20	0.427	0.429	0.433	75.600	75.583	75.243	75.48	0.12	
40	0.311	0.317	0.309	82.229	81.958	82.333	82.17	0.11	
80	0.104	0.101	0.107	94.057	94.252	93.882	94.06	0.11	

Table 4: The % of inhibition of methanolic extracts of AA. Ascorbic acid (AA)

Ascorbic	acia (AA)								
Conc.	Abs 1	Abs 2	Abs 3	%	of inhibitio	n	AVG%	SEM	IC_{50}
0	1.785	1.810	1.779	0.000	0.000	0.000	0.00	0.00	
5	1.481	1.479	1.450	17.031	18.287	18.494	17.94	0.46	
10	0.829	0.824	0.827	53.557	54.475	53.513	53.85	0.31	12.78
20	0.469	0.471	0.472	73.725	73.978	73.468	73.72	0.15	
40	0.319	0.301	0.318	82.129	83.370	82.125	82.54	0.41	
80	0.109	0.111	0.113	93.894	93.867	93.648	93.80	0.08	

Table 5: Absorbance of ascorbic acid at different	
concentration.	

concentration.									
Total An	Total Antioxidant capacity assay								
Standard: Ascorbic acid									
Conc.	Abs	Abs	Abs	AVG					
200	0.941	0.949	0.952	0.947					
100	0.421	0.429	0.427	0.426					
50	0.187	0.191	0.192	0.190					
5	0.029	0.031	0.033	0.031					
0	0.000	0.000	0.000	0.000					

reagent (FCR). The FCR actually measures a samples reducing capacity. The exact chemical nature of FCR is not known. Nevertheless, it is believed to contain heteropolyphosphotunstates-molybdates. Sequences of reversible one or two electron reduction reactions lead to blue species possibly $(PMoW_{11} O_{40})^4$. The total phenolic content of methanolic extract and several organic fraction were determined using Folin-ciocalteu reagent³⁵ and aluminum chloride method36 based on the method of Woisky and Salatino (1998)³⁷ respectively. The content of phenolic in the extract of Syzygium aromaticum was calculated from regression equation of the calibration curve and is expressed as Gallic acid standard /equivalent (GAE)³⁸.

In vivo Test

Acute toxicity test

Acute toxicity performed to categorize the LD_{50} median lethal dose (LD_{50}) value - an estimate of the dose of a test substance that kills 50% of the test animals. The classification of acute toxicity is primarily based on a dose or concentration which is considered to causes mortality and this is called the acute toxicity estimate (ATE). Table 6: Absorbance of methanolic extract of

Syzygium aromaticum (SA _f)							
Conc.	Abs	Abs	Abs	AVG	ST. DE		
200	0.927	0.924	0.929	0.927	0.001		

According to the acute toxic classic method by Lorke³⁹, the animals were divided into 4 groups containing 4 animals each. The Syzygium aromaticum (SA_f) suspension was administrated orally in increasing dose up to 200 mg/kg to 1500 mg/kg. These animals were observed for mortality and toxicity for 14 days.

Study on Anti-hyperglycemic activity on Alloxan-induced diabetic mice

To perform antidiabetic activity, randomly separated group of mice were injected intra-peritoneally (I.P.) at a dose of 120 mg/kg b.w. alloxan monohydrate (fluka, Germany) freshly prepared in normal saline solution. After an hour of alloxan administration, animals were given feed ad libitum and 1ml of (100 mg/ml) glucose i.p. to combat ensuring severe hypoglycemia after 72 hr of Alloxan injection; the animals were tested for evidence of diabetes by estimating their blood glucose level using gluco-meter. Mice shown FBG > 150 mg/dl considered diabetic and selected for studies.

Animal grouping and experimental design

Animals selected were fasted overnight and then divided into four groups (n=4) as follows:

Group-I: Normal control mice (non-alloxanized) that administered distilled water only; Group-II: Diabetic control mice (Untreated, alloxanized); Group-II:Diabetic mice administered with Syzygium aromaticum (SA_f) (200 mg/kg/day) respectively: Group-IV: Diabetic mice administered with Syzygium aromaticum (400 mg/kg/day)

		1 2	5 50	· · · · ·	.,			
Conc.	Abs 1	Abs 2	Abs 3	% Reduci	ng Power		Avg	SEM
0	0.249	0.248	0.247	0.00	0.00	0.00	0.00	0.00
5	0.260	0.267	0.264	4.42	7.66	6.88	6.32	0.98
25	0.489	0.481	0.497	96.39	93.95	101.21	97.18	2.13
50	0.584	0.579	0.589	134.54	133.47	138.46	135.49	1.52
100	0.791	0.790	0.795	217.67	218.55	221.86	219.36	1.28
200	0.843	0.846	0.839	238.55	241.13	239.68	239.79	0.75

Table 8: % reducing power capacity of AA in different conc.

Conc.	Abs 1	Abs 2	abs 3	%	Reducing Pov	wer	Avg	SEM
0	0.251	0.255	0.253	0	0	0	0	0
5	0.285	0.287	0.285	13.55	12.55	12.65	12.91	0.317
25	0.521	0.525	0.522	107.57	105.88	106.32	106.59	0.505
50	0.639	0.647	0.651	154.58	153.73	157.31	155.21	1.082
100	0.804	0.807	0.805	220.32	216.47	218.18	218.32	1.113
200	0.911	0.917	0.915	262.95	259.61	261.66	261.41	0.973

Table 9: Absorbance of Gallic acid at different concentration

concentra	uion.			
Conc.	Abs	Abs	Abs	Avg
200	2.890	2.870	2.930	2.897
150	2.110	2.190	2.170	2.157
100	1.390	1.420	1.450	1.420
50	1.021	1.040	0.990	1.017
0	0.000	0.000	0.000	0.000
50 0				

Table 10: Absorbance of methanolic extract of Syzygium aromaticum (SA_f).

Total Phenolic content									
Syzygium aromaticum (SA _f)									
Conc.	Abs	Abs	Abs	AVG	ST. DE				
0.0002	1.190	1.152	1.171	1.171	0.019				

respectively: Group-V: mice administered once with Vildagliptin (50 mg/kg) as reference standard drug.

RESULTS

Extractive values

The extractive values of, methanol, chloroform, and aqueous extracts are given in Table 1. The highest extractive yield was found in the methanolic dried flower buds extract. Consecutive extractive values discovered the solubility and polarity specifics of the metabolites in the plant. Methanolic extract showed high extractive yield 27.89% w/w when compared to Aqueous extracts.

Qualitative Screening

By performing qualitative screening through different analytical test, founded following indication of presence (Table 2).

DPPH free radical scavenging activity

Like a potent inhibitor of oxidation, methanolic extract of *Syzygium aromaticum* (SA_f) demonstrated H-donor activity and showed potent scavenging rate of DPPH. The percentage (%) of scavenging was found to be concentration dependant, i.e., scavenging capacity increases with the increase of concentration of both the extracts. By contrasting % of inhibition for SA_f and AA for the concentration of 80 μ g/ml, found 94.06±011% and

93.80±0.08% (Table 3 and Table 4) respectively, which indicate potent antioxidant capacity of sample (SA_f). Furthermore, the IC₅₀ values of SA_f and AA is 13.204 μ g/ml. and 12.78 μ g/ml calculated by using regression equation curve Fig.1 and Fig.2 respectively.

Total antioxidant activity

Total antioxidant capacity of methanolic extract of *Syzygium aromaticum* (SA_f) evaluated by Prieto P procedure and expressed as the number of equivalent of ascorbic acid (AA). The Total antioxidant activity was calculated from regression equation curve (y=0.004x-0.024, R²=0.994) and expressed as ascorbic acid equivalent (AA) and found *Syzygium aromaticum* (SA_f) as 356.5 mg/g equivalent of AA (Table 5, Table 6 and fig 4). *Calculation*

y = 0.004x - 0.024 y=0.927; m=0.004; c=0.024

X=237.67 microgm/ml

C= 0.2377 microgm/ml; V=0.3 ml; m=.0002

 $A = (C \times V)/m$

=356.5

Where,

 $\mathbf{A} = (\mathbf{C} \mathbf{x} \mathbf{V})/\mathbf{m}$

A = Total content of Antioxidant compounds, mg/g plant extract, in Ascorbic acid

C= The concentration of ascorbic acid established from the calibration curve, mg/ml

V = The volume of extract, ml;

m = The weight of pure plant methanolic extract, g

Reducing power Assay

The reducing power of methanolic extract of *Syzygium* aromaticum (SA_f) was measured using FRAP assay. It measures the antioxidant effect of any substance in the reaction medium in term of its reducing ability and it reflects total antioxidant power involving the single electron transfer reaction. Table 7, Table 8& Fig.5 shows the reductive capabilities of SA_f compared to AA at different concentration. The reducing power of *Syzygium* aromaticum (SA_f) rise as the concentration gradually increased and founded remarkable % reducing power capacity as 239.79±.075 compared to ascorbic acid 261.41±.0973 respectively.

Determination of Total Phenolic content

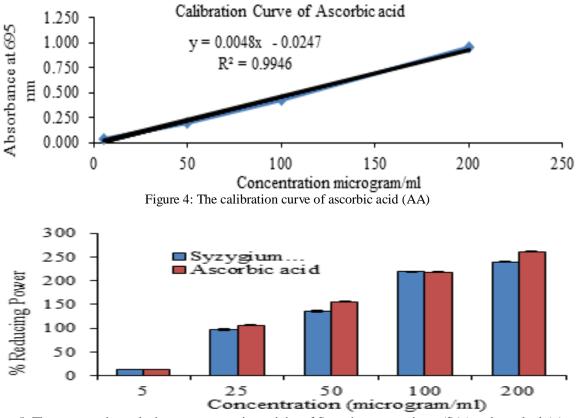


Figure 5: The comparative reducing power capacity activity of Syzygium aromaticum (SAf) and standard AA.

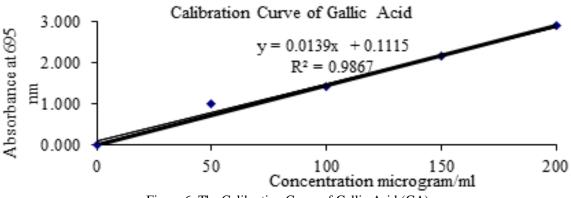


Figure 6: The Calibration Curve of Gallic Acid (GA)

The total phenolic content in the extracts of *Syzygium* aromaticum (SA_f) was determined according to the colorimetric Folin-Ciocalteu assay with Gallic acid as a standard compound. The total phenolic content was calculated from regression equation curve (y=0.013x+0.111, R²=0.986) and expressed as Gallic acid equivalent (GAE) (Table 9 and fig 6). A potent range of total phenolic content was found in the plant materials to be 407.69 mg/g plant extract (in GAE) for *Syzygium* aromaticum (SA_f) (Table 10).

Calculation

Regression equation y = 0.013x + 0.111; y=1.171; m=0.013; c=0.111 x= 81.538 micro gm/ml; C= 0.0815 mg/ml; V=1 ml; m=.0002 A = (C x V)/m = 407.69 mg/g Gallic Acid

The amount of total phenol content of Syzygium aromaticum is 407.69 mg/g Gallic Acid

Where, A = Total phenol content, mg/g plant extract, in Gallic acid

C= the concentration of Gallic acid established from the calibration curve, mg/ml

V= the volume of extract, ml; m= the weight of pure plant methanolic extract, g

Acute toxicity

During the acute toxicity estimate (ATE) study of the extracts, either mortality or any considerable symptoms of toxicity was not found after the oral administration of *Syzygium aromaticum* (SA_f) up to a dose of 1.5 g/kg body weight in mice. Even no significant changes in general behavior was observed in mice up to 14-days study.

Blood glucose level	mmol/L							
Group	Mice no	Day 1	Day 2	Day 3	Day 4	Avg	SD	SEM
	M1	5.3	5.5	5.2	5.1	5.27	0.1707	0.085
Normal control	M2	5.1	5.3	5.2	5.4	5.25	0.129	0.065
	M3	5.6	5.7	5.4	5.2	5.47	0.221	0.110
	M4	5.7	5.3	5.6	5.7	5.57	0.189	0.094
Alloxanized	M1	12.3	13.5	15.9	17.7	14.82	2.43	1.21
Control mice	M2	12.7	14.6	15.6	16.7	14.9	1.69	0.85
Untreated	M3	12.5	15.4	17.1	18.4	15.85	2.54	1.27
	M4	12.8	15.6	16.5	17.9	15.7	2.15	1.07
Syzygium	M1	12.4	10.6	8.5	7.7	9.8	2.12	1.06
aromaticum	M2	13.1	11.4	8.9	7.3	10.17	2.578	1.28
200mg/kg	M3	13.5	11.1	8.7	7.3	10.15	2.72	1.36
	M4	12.8	11.4	9.1	8.2	10.37	2.10	1.05
Syzygium	M1	13.1	9.8	6.9	5.3	8.77	3.43	1.71
aromaticum	M2	12.9	9.6	6.4	5.1	8.55	3.42	1.71
400mg/kg	M3	13.5	9.2	6.4	5.3	8.6	3.65	1.82
	M4	12.7	9,7	7.1	5.2	8.7	3.22	1.61
Vildagliptin	M1	12.9	7.9	6.3	4.8	7.97	3.51	1.75
50mg/kg/day	M2	13.1	8.1	6.7	4.4	8.07	3.68	1.84
	M3	14.1	8.5	6.1	4.7	8.35	4.14	2.07
	M4	13.6	8.2	6.3	4.3	8.2	3.90	1.95

Table 11: Blood glucose level of alloxan induced diabetic mice after treatment with the methanolic extracts of SA_f 200mg/kg and 400mg/kg -body weight for consecutive 4 days.

Study on Antidiabetic activity on Alloxan-induced diabetic mice

The consequences after chronic administration of SA_f summarized in (Table 11), showed significant antihyperglycemic action between experimental and diabetic control mice. At a dose of 200 mg/kg body weight, SA_f significantly lowered blood glucose level and showed reduction of 41.11 % and at 400 mg/kg SA_f body weight dose, produced maximum reduction of 59.96 % of blood glucose level, respectively, inhibition of blood glucose level 66.11 % was found for vildagliptin (50 mg /kg) on day 4 as a peak.

DISCUSSION

In vitro antioxidant activity

In vitro findings indicated that Syzygium aromaticum (SA_f) attributed their anti-oxidative abilities in terms of total scavenging activity, Reducing power Capacity, total antioxidant capacity and DPPH radical Total Phenolic Content.

DPPH radical scavenging activity

Potential DPPH radical scavenging activity revealed by SA_f might confirm its hydrogen donating capacity. Furthermore, the IC₅₀ values of *Syzygium aromaticum* (SA_f) contrast with AA is 13.204 µg/ml. and 12.78 µg/ml proposed ability to protect the consumers' health from various free radical-related diseases.

Total antioxidant activity

The experiential total antioxidant activity of SA_f as 356.5 mg/g equivalent of AA might be contribute for investigating phenolic compounds in (SA_f) extracts. Due to potent antioxidant activity SA_f extracts may be accountable for its anti-inflammatory and chemo

protective mechanism. As well as justifying the basis of using this plant's extract as folkloric remedies.

Reducing power assay

Dose-dependent high yield of reducing ability of the extracts exerts antioxidant action by breaking the free radical chain by donating hydrogen atom⁴⁰. From our investigation we founded remarkable % reducing power capacity as $239.79\pm.075$ compared to ascorbic acid $261.41\pm.0973$ respectively, so this reducing capacity of SA_f is an important approach for the management of oxidative stress ailment.

Total phenol content

Plants are the major source of phenolic compound; have several biological activities including antioxidant properties⁴¹.Many studies focused on the correlation of antioxidant activity to phenolic compounds content. The results of Kumar *et al.*⁴² Yao *et al.*⁴³ and Hinnenburg *et al.*⁴⁴ stated a strong correlation between phenol and antioxidant activity. Through our evaluation we found the amount of total phenol content of Syzygium aromaticum (SA_f) is407.69 mg/g Gallic Acid which indicate potent phenolic content and help to initiate anti-hyperglycemic test.

Acute toxicity

In respect to peak nonfatal doses studied exposed the nontoxic nature of SA_f . Until the end of the study period there was no lethality or any noxious reactions originate at any of these doses selected. According to toxicity classification⁴⁵ the SA_f extract is nontoxic.

In vivo Anti-diabetic effect

Type -1 (Insulin-dependent) diabetes study model has been developed here to investigate the anti-hyperglycemic activity of (SA_f) . By using Alloxan (a beta-cytotoxin) insulin-secreting pancreatic β -cells destructed - (a reactive

oxygen species-dependent oxidative damage⁴⁶) and resulting diminished level of serum insulin^{47.} Vildagliptin, 50 mg/kg/day were treated on experimental groups as standard and test samples SA_f to evaluate and compare anti-hyperglycemic activity. Chronic administration of SA_f in diabetic mice resulted into efficient lowering of blood glucose level suggesting that the extracts might possess insulin-like effect on peripheral tissues either by promoting glucose uptake and metabolism or inhibiting hepatic gluconeogenesis since alloxan treatment causes permanent destruction of β -cells.

CONCLUSION

The consequences of entire experimentation indicated that *Syzygium aromaticum* (SA_f) have both hypoglycemic and antioxidant potential. The present study suggests that by lowering serum blood glucose level in diabetic mice, SA_f ensure higher antioxidant or reducing capacity with huge amount of phenolic content.

ACKNOWLEDGEMENTS

The authors are grateful to the Department of Pharmacy, Southeast University Banani, Dhaka, Bangladesh and the State University, Bangladesh.

COMPETING INTERESTS

The authors have declared that no competing interests exist.

CONSENT

Not applicable.

REFERENCES

- 1. Valko M, Leibfritz D, Moncol J, Cronin MT. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39:44–84. [PubMed].
- 2. Halliwell B, John MC Gutteridge. 4th ed. London, UK: Oxford University press; 1989. Free Radicals in Biology and Medicine.
- 3. Luo JZ, Luo L. American ginseng stimulates insulin production and prevents apoptosis through regulation of uncoupling protein-2 in cultured *b* Cells. Evid Based Complement Alternat Med. 2006; 3:365–372. [PMC free article] [PubMed].
- 4. Parejo I, Viladomat F, Bastida J, Rosas-Romero A, Saavedra G, Murcia MA, et al. Investigation of bovilian plant extracts for their radical scavenging activity and antioxidant activity. Life Sci. 2003; 73:1667–81. [PubMed].
- 5. Ramos A, Visozo A, Piloto J, Garcia A, Rodriguez CA, Rivero R. Screening of antimutagenicity via antioxidant activity in Cuban medicinal plants. J. Ethnopharmacol. 2003; 87:241–6. [PubMed].
- 6. Ghani A; 1998; Medicinal plants of Bangladesh: Chemical constituents and uses. Asiatic society of Bangladesh, Dhaka.
- Sofowora A: Medicinal Plants and Traditional Medicine. In: Africa; John Willey & Sons Ltd. NY 1982.

- 8. Alqareer, A., Alyahya, A., and Andersson, L. The effect of clove and benzocaine versus placebo as topical anesthetics. J Dent 2006; 34(10):747-750. 16530911.
- Pongprayoon, U., Baeckstrom, P., Jacobsson, U., Lindstrom, M., and Bohlin, L. Compounds inhibiting prostaglandin synthesis isolated from Ipomoea pescaprae. Planta Med 1991; 57(6): 515-518. 1818340.
- Feng, J. and Lipton, J. M. Eugenol: antipyretic activity in rabbits. Neuropharmacology 1987; 26(12):1775-1778. 3501843.
- 11. Bae, E. A., Han, M. J., Kim, N. J., and Kim, D. H. Anti-Helicobacter pylori activity of herbal medicines. Biol Pharm Bull 1998; 21(9):990-992. 9781854.
- 12. Briozzo, J., Nunez, L., Chirife, J., Herszage, L., and D'Aquino, M. Antimicrobial activity of clove oil dispersed in a concentrated sugar solution. J Appl Bacteriol 1989; 66(1):69-75. 2542213.
- 13. Martinez Nadal NG and Montalvo AE. Antimicrobial properties of bay and other phenolic essential oils. Cosmet Perfum 1973; 88(10):37-38.
- 14. Friedman, M., Henika, P. R., Levin, C. E., and Mandrell, R. E. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. J Agric Food Chem 2004; 52(19): 6042-6048. 15366861.
- 15. Bennis, S., Chami, F., Chami, N., Bouchikhi, T., and Remmal, A. Surface alteration of Saccharomyces cerevisiae induced by thymol and eugenol. Lett Appl Microbiol 2004; 38(6):454-458. 15130138.
- 16. Chami, N., Bennis, S., Chami, F., Aboussekhra, A., and Remmal, A. Study of anticandidal activity of carvacrol and eugenol in vitro and in vivo. Oral Microbiol Immunol 2005; 20(2): 106-111. 15720571.
- 17. Guynot, M. E., Ramos, A. J., Seto, L., Purroy, P., Sanchis, V., and Marin, S. Antifungal activity of volatile compounds generated by essential oils against fungi commonly causing deterioration of bakery products. J Appl Microbiol 2003; 94(5):893-899. 12694455.
- 18. Hasan, H. A. and Issa, A. A. Influences of chemical fertilizers (in vitro) on aflatoxin and citrinin synthesis by two strains of aspergilli. Folia Microbiol (Praha) 1993; 38(6): 456-458. 8150393.
- 19. el Naghy, M. A., Maghazy, S. N., Fadl-Allah, E. M., and el Gendy, Z. K. Fungistatic action of natural oils and fatty acids on dermatophytic and saprophytic fungi. Zentralbl Mikrobiol 1992; 147(3-4):214-220. 1609554
- 20. Mahoud, L.E. Antifungal action and antiaflatoxigenic properties of some essential oil constituents. *Lett. Appl. Microbiol.*, 19:110-113, 1994.
- 21. Kumari, M. V. Modulatory influences of clove (Caryophyllus aromaticus, L) on hepatic detoxification systems and bone marrow genotoxicity in male Swiss albino mice. Cancer Lett 1991; 60(1):67-73.
- 22. Damiani, C. E., Rossoni, L. V., and Vassallo, D. V. Vasorelaxant effects of eugenol on rat thoracic aorta. Vascul Pharmacol 2003; 40(1):59-66. 12646411.
- 23. Yoo, C. B., Han, K. T., Cho, K. S., Ha, J., Park, H. J., Nam, J. H., Kil, U. H., and Lee, K. T. Eugenol isolated from the essential oil of Eugenia caryophyllata induces

a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett 7-8-2005; 225(1):41-52. 15922856.

- 24. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983; 16:109.
- "Mayer's reagent". Sigma Aldrich. Retrieved 2012-02-08. K2HgI4.
- 26. "Test Solutions". US Pharmacopeia. Retrieved 2012-02-08.
- 27. Bello IA, Ndukwe GI, Audu OT, Habila JD (2011). "A bioactive flavonoid from Pavetta crassipes K. Schum". Organic and Medicinal Chemistry Letters 1 (1): 14. Doi:10.1186/2191-2858-1-14. PMC 3305906. PMID 22373191.
- 28. M.Oktay, I.Gulein, I.Kufreviolglu, Labenson-Wiss U. Technol, 2003, 36, 263-71.
- 29. Braca A, Tommasi ND, Bari LD, Pizza C, Politi M, Morelli I (2001). Natural anti-oxidants from plant material in phenolic compounds in food and their effects on health. J. Nat. Prod., 64: 892-895.
- 30. Luximon-Ramma A, Bahorun T, Soobrattee MA, Aruoma OI (2002). Antioxidant activities of phenolic, proanthocyanidins, and flavonoid components in extracts of Cassia fistula. J. Agric. Food Chem., 50: 5042-5047.
- 31. Suksomtrip M, Ukrisdawithid S, Bhusawang P, Pongsamart S. Phenolic compound content, antioxidant and radical-scavenging properties of methanolic extracts from the seed coat of certain Thai tamarind cultivars. J Food Biochem. 2010; 34:916–31.
- 32. Viturro C, Molina A and Schmeda-Hischmann G (1999). Free radical scavengers from Mutisia friesiana (Asteraceae) and Sanicula graveolens (Apiaceae). Phytotherapy Research 13: 422-424.
- 33. Prieto P, Pineda M and Aguilar M (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of а Phosphomolybdenum Complex: Specific application to determination of vitamin E. Analytical the Biochemistry 269, 337-341.
- 34. Oyaizu M (1986). Studies on product of browning reaction prepared from glucose amine. Japanese Journal of Nutrition 44: 307-315.

- 35. YU. L, S. Haley, J. Perret, M. Harris, J. Wilson and M. Qian, 2002. Free radical scavenging properties of wheat extracts. J. Agric Food Chem, 50:1619-1624.
- 36. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C., Estimation of total flavonoids content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182, (2002).
- Woisky, R., & Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. Journal of Apicultural Research, 37, 99–105, (1998).
- 38. Slinkard K and Singleton VL (1977). Total phenol analyses: automation and comparison with manual methods. Am. J. Enol. Viticult. 28: 49-55.
- 39. Arch Toxicol. 1983 Dec; 54(4):275-87.A new approach to practical acute toxicity testing. Lorke.
- 40. Duh PD, Tu YY, Yen GC. Antioxidant activity of the aqueous extract of harn jyur (Chrysanthemum morifolium Ramat). Lebensm Wiss Technol 2006; 32:269-77.
- 41. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: Chemistry, metabolism and structureactivity relationships. J Nutr Biochem 2002; 13:572-584.
- Kumar K.S., Ganesan K., Subba-Rao P.B., Antioxidant potential of solvent extracts of *Kappaphycus alvarezii* (Doty) Doty- an edible seaweed, Food Chem., 2008, 107, 289-295.
- 43. Yao Y., Sang W., Zhou M., Ren G., Phenolic composition and antioxidant activities of 11 celery cultivar, J. of Food Sci., 2009, 75 (1), 9-13.
- 44. Hinneburg I., Dorman D.H.J, Hiltunen R., Antioxidant activities of extracts from selected culinaryherbs and spices, Food Chem., 2006, 97, 122-129.
- 45. Ghosh MN. Toxicity studies. In: Ghosh MN, editor. Fundamentals of Experimental Pharmacology. Kolkata, India: Hilton & Company; 2008. p. 176-83.
- 46. Kamalakkanan N, Prince PS. Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin induced diabetic wister rats. Basic Clin Pharmacol Toxicol 2006; 98:97-103.
- 47. Yamamoto H, Uchigata Y, Okamoto H. Streptozotocin and alloxan induces DNA strand breaks and poly (ADP ribose) synthatase in pancreatic islet. Nature 1981; 294:284-6. [PUBMED]