Quality Standardization of Flowers of *Nyctanthes arbor-tristis* Linn.

Bindu Gopalkrishnan*, Roy Chiranjeev

Department of Botany, SVKM’s, Mithibai College of Arts, Chaunhan Institute of Science & Amruthben Jivanlal College of Commerce and Economics, Vile Parle (West), Mumbai-56

Received: 31st May, 17; Revised 30th Sept, 17, Accepted: 14th Oct, 17; Available Online: 25th Oct, 17

ABSTRACT

Harsinghar/Parijataka is a sacred plant grown near the temples as well as in residential areas in India. Each and every part of the plant is used as medicine by the aboriginals. It is botanically known as *Nyctanthes arbor-tristis* L. from family Oleaceae. The stem bark and leaves have been studied in details. Although the flowers of parijataka have curative properties in inflammations, ophthalmopathy, flatulence, colic etc. the study is lacking. Hence it was felt necessary to put forth the pharmacognostical standards for the said flower. The present work involves the macroscopic, microscopic and histochemical studies of petals and corolla tubes. The entire flower was investigated for powder microscopy, fluorescence, physicochemical and qualitative phytochemical analysis. Thus these standards will be of utmost important in identification of *Nyctanthes arbor-tristis* flower.

Keywords: *Nyctanthes arbor-tristis*, Harsinghar/Parijataka, flower, Pharmacognosy.

INTRODUCTION

Nyctanthes arbor-tristis L., popularly known as Parijataka, Night Jasmine or Harsinghar belong to family Oleaceae. It is commonly cultivated sacred tree for its sweet scented flowers. Each and every part of the plant is of medicinal value. The flowers are bitter, astringent, ophthalmic, stomachic and carminative. They are useful in inflammations, ophthalmopathy, flatulence, colic, dyspepsia, splenomegaly, greyness of hair and baldness. The oil is extracted from the flower and used in perfumery. The *Nyctanthes arbor-tristis* is a hardy small tree, often growing up to 5 – 10 m high, with drooping branches and quadrangular branchlets. Flowers are fragrant. The flower inflorescence is trichotomous cymes. Each flower is bracteate, actinomorphic, bisexual, hypogynous and pentameros. Calyx consists of 5 sepals, gamosepalous, minute, persistent, triangular tips, 0.5-0.6cm in length. The Corolla is five in number, gamopetalous with white petals and orange corolla tube. Capsule sub-ornbucular and compressed. It is native of India, occur wild in sub-Himalayan ranges from Chenab to Nepal, Central India and Southwards to Godavari. Most commonly cultivated in India as well as in all tropical countries. In, spite of the numerous medicinal uses attributed by the flowers. The flower of Harsinghar is not been studied. Therefore there is a need to put forth the pharmacopoeial standards for the flower. Hence the present investigation includes macroscopic, microscopic, histochemical evaluation, fluorescence study, determination of physicochemical constants and preliminary phytochemical screening of *Nyctanthes arbor-tristis* flower (Corolla).

MATERIALS AND METHODS

The matured flowers of *Nyctanthes arbor-tristis* were procured from Bhayandar and Malad, regions of Mumbai. The botanical identity was confirmed from Botanical Survey of India, Pune. Flowers were subjected to shade drying. The dried flower was ground into powder which was sieved through mesh no. 710 with 0.710 mm size of aperture. The voucher specimens of the authentic drug were deposited at Research Laboratory, Botany Department, Mithibai College.

RESULTS

Macroscopy of petals and corolla tube

As per the folklore uses the corolla of the flower was only studied for the current investigation. The corolla consist of petals (Limb) and the corolla tube. The Corolla tube is...
bright orange with five white petals; corolla tube 0.9 – 1cm length, petals 1.4-1.5 cm in length, the margins of petal curl downwards, tips notched. The throat of the corolla shows orange centre. The androecium is with two stamens inserted near the top of corolla tube. The flower has sweet aromatic odour and bitter taste. (Figures 1, 2)

Microscopy of petals and corolla tube
T.S. of flower passing through petals (Limb)
Outer epidermis
It is thin layer and consists of three layers of parenchymatous cells, (30 - 45 µm in diameter) with intercellular space and poorly developed vascular bundles at intervals. The cells are filled with abundant oil globules.

Inner epidermis
It is warty, with compactly arranged cells covered with cuticle (30µm in length and 30 - 45 µm in breadth). The inner epidermis also shows presence of anomocytic stomata. (Figure 3)

T.S. of flower passing through corolla tube

Mesophyll region
It is made up of polygonal to polyhedral parenchymatous cells arranged (15 – 30 µm in diameter). Many of the cells are filled with amber coloured granular deposits. It also possesses prismatic calcium oxalate crystals, tannins and oil globules. Vascular bundles are present at intervals with xylem and phloem.

Inner epidermis
The cells of inner epidermis is compactly arranged and covered with cuticle. The corolla tube on the outer side is smooth walled but the tube at the inner side is rough due to the presence of unicellular trichomes. Few cells enlarge and form a parenchymatous appendage with vascular bundle. (Figure 4)

Histochemical tests
The histochemical analysis using various reagents showed presence of primary and secondary metabolites as given in table 1.

Powder study
The flower powder is orange red in colour, with bitter taste and aromatic odour. In microscopic study, it shows non-glandular unicellular trichomes, tannin filled cells, anomocytic stomata, oil globules, pollen grains and amber coloured pigments. (Figures 5 and 6)

Fluorescence analysis
The powder shows very significant characteristic fluorescence. Observations are recorded in table 2.

Physicochemical studies
Air-dried powdered flower of *Nyctanthes* was subjected to physicochemical analysis. The results obtained are mentioned in table 3.

Preliminary phytochemical screening
The ethanol, chloroform and water extracts revealed the presence of various active constituents as shown in table 4.
qualitative phytochemical and histochemical screening revealed the presence of diverse types of phytochemicals namely, alkaloids, tannins, terpenoids, flavonoids, saponins, essential oil etc. They give clue about therapeutic potential of the drug. In brief, all these findings are highly essential for the drug manufacturers in thorough assessment of quality drug.

ACKNOWLEDGEMENT
The authors are thankful to the Management of Mithibai College, Vile Parle, for providing the necessary laboratory and library facilities for the present work.

REFERENCES

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Phytoconstituents</th>
<th>Tests</th>
<th>WE</th>
<th>AE</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Reducing</td>
<td>Fehling's test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>sugars</td>
<td>Benedict's test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2.</td>
<td>Mucilage</td>
<td>Ruthenic acid red test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>Alkaloids</td>
<td>Wagner's test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dragendorff's test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mayer's test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4.</td>
<td>Tannins</td>
<td>FeCl3 test</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5.</td>
<td>Cardiac glycosides</td>
<td>Kellar-Killani test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6.</td>
<td>Cyanogenetic glycosides</td>
<td>Guignard test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>Anthraquinone glycosides</td>
<td>Borntrager's test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8.</td>
<td>Steroids</td>
<td>Lieberman-Burchard's test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.</td>
<td>Proteins</td>
<td>Millon's test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10.</td>
<td>Terpenoids</td>
<td>Salkowski test</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>Flavonoids</td>
<td>Shinoda test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>12.</td>
<td>Saponins</td>
<td>Foam test</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13.</td>
<td>Starch</td>
<td>Iodine test</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: WE – Water Extract, AE – Alcohol Extract, CE – Chloroform Extract, + ’ Present, ‘-’ Absent

4. Prajapati, ND, Purohit SS, Sharma AK, Kumar T., Medicinal plants Ato Z, Agrobios India, 2003; 364.