Phytochemical Constituents and In Vitro Anti-Diabetic Properties of Ziziphus jujuba (Rhamnaceae) Fruits

Stoilova I*, Trifonova D¹, Marchev A², Stanchev V³, Angelova G¹, Krastanov A¹

¹University of Food Technology, Department of Biotechnology, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria
²Bulgarian Academy of Science, Department of Applied Microbiology, Laboratory of Applied Biotechnologies, Plovdiv, Bulgaria
³Department of Automatics, Information and Control Systems, University of Food Technologies, 26 Maritza Blvd., 4002 Plovdiv, Bulgaria

Received: 6th Dec, 17; Revised: 30th Jan, 17; Accepted: 14th Feb, 17; Available Online: 25th February, 2017

ABSTRACT
In the current study the phytochemical profile of 70% ethanol extract of Ziziphus jujuba (Rhamnaceae), cultivated in Bulgaria has been investigated. The fruit extract contained numerous phytochemicals, such as triterpenes, phenolic acids and flavonoids. Five triterpenes, 11 phenolic acids and 5 flavonoids have been identified. The fruit extract had a total phenolic content of 21.62 ± 0.0265 mg/g and total flavonoid content 1.34 ± 0.017 mg/g dried extract. Among the triterpenes with the highest concentration was the betulinic acid 20943.17±527.06 µg/g dried extract, rosmarinic acid (1174.26±29.55 µg/g) among the phenolic acids, followed by myricetin (214.61±5.40 µg/g) as a representative of flavonoids and rutin 3-046.89±76.68 among the quercetin glycosides. The inhibitory effect of Z. jujuba fruit extract has been investigated on the key enzymes linked to diabetes - α-glucosidase and α-amylase. In order to evaluate the type of inhibition a Lineweaver-Burk plot was produced. The results obtained from the enzyme kinetic studies exhibited a mixed noncompetitive-uncompetitive type of inhibition on α-glucosidase and mixed competitive-non-competitive type of inhibition on α-amylase. Besides that the obtained results proved high inhibition of α-glucosidase (79.46% at 1.33 mg.ml⁻¹ extract) and moderate inhibition of α-amylase (39.10% at 0.666 mg.ml⁻¹ extract concentration). These results suggest the possible use of fruits of Z. jujuba in the management of diabetes mellitus.

Keywords: Ziziphus jujuba, phytochemical profile, α-glucosidase, α-amylase, inhibition, anti-diabetic properties.

INTRODUCTION
Diabetes mellitus is a major health challenge that concern about 220 million people over the world, estimating that this number will double till 2030¹. Diabetes mellitus is a metabolic disease characterized by hyperglycaemia resulting from either defect in insulin secretion, insulin action, or both. The possibilities to predict the arising of diabetes type 2 is restricted. In spite of that abnormally high glucose metabolism could be registered several years before diabetes formation. One of the therapeutic approaches for treatment of diabetes is to control the levels of blood sugar through inhibition of all enzymes responsible for degradation of starch and sugars in the food products to glucose. The inhibition of α-glucosidase and α-amylase hamper the digestion of carbohydrates and assimilation of glucose with decreasing the postprandial hyperglycemic. In humans 6 enzyme activities, 2 α-amylases and 4 α-glucosidases are involved in the degradation of carbohydrates². Commercial α-glucosidase inhibitors, such as acarbose, voglibose and miglitol have a wide clinical application for controlling the blood sugar levels in patients³. Along with that has been reported that these substances cause numerous side effects, including flatulence, diarrhea, and abdominal pain⁴. The treatment with acarbose is not recommended to patients with cirrhosis, renal failure and gut disease⁵. Regarding these effects, the screening for more effective and safety enzyme inhibitors from natural sources are good alternative for prevention and treatment of diabetes type 2.

The medicinal properties of Ziziphus species result from the diverse groups of secondary metabolites identified in leaves or seeds extracts. The experimental pharmacology proves numerous activities of Ziziphus extracts, e.g. antiallergic⁶,⁷ and analgesic⁸. The antihyperglycemic activity of leaves extracts from Zizyphus spina, Z. spina-christi (L.) and ethanol extract from seeds of Z. jujuba has been documented⁹. Glombitza et al.¹⁰ reported for hypoglycemic and antihyperglycemic effect of Z. spinachristi. The antidiabetic and antiallergic activities of water extracts from Z. mauritiana has been reported as well¹¹. Ethanol extract from seeds Ziziphus jujuba² and extract of Ziziphus jujuba leaves¹² decreased the serum glucose level in diabetic rats.

The fruits of Ziziphus are rich sources of biologically active molecules, such as polysaccharides, phenolic compounds, terpenes, saponins etc. Each molecule possesses unique and multifactorial properties and has

*Author for Correspondence: wstoilowa@yahoo.com
multiple mechanisms for improvement of insulin sensitivity. There is insufficient information about the phenolic acids, flavonoids and quercetin glycosides contents in the fruits of *Z. jujuba*. The investigated plant species is cultivated in Bulgaria and analyses of his medicinal properties are still lacking. Although the fruits of *Z. jujuba* are used in traditional medicine for diabetes treatment, they are insufficient studied regarding their inhibitory activity of digestive enzymes.

In this aspect main objective of this survey is to give an insight of the biologically active compounds in 70% ethanolic extract from fruits of *Z. jujuba*, cultivated in Bulgaria, and to study the inhibitory activity of the extract, resulting from its bioactive components, against α-glucosidase and α-amylase.

MATERIALS AND METHODS

Plant material

The fruits of *Ziziphus jujuba* (Rhamnaceae), cultivated in Bulgaria were dried at 40°C, afterwards grinded, frizzed and lyophilized.

Chemicals and Reagents

α-Glucosidase from *Saccharomyces cerevisiae* (EC 3.2.1.20), α-amylase from porcine pancreas (EC 3.2.1.1), p-nitrophenyl-α-D-glucopyranoside (pNPG), acarbose, 4-hydroxybenzoic acid hydrazide (PAHBH), starch soluble (extra pure) were obtained from Sigma-Aldrich (Darmstadt, Germany). Phenolic standards: gallic, vanillic, ferulic, p-coumaric, p-hydroxy benzoic, syringic, transcinnamic, chlorogenic and rosmarinic acid, myricetin, quercetin, luteolin, kaempferol, apigenin, rutin, hyperosid, carnosic acid, betulin, betulinic acid, oleanolic and ursolic acid acid were purchased from Sigma-Aldrich (Darmstadt, Germany). The other reagents were of analytical and HPLC grade and double distilled water was used for the preparation of the reagents.

Preparation of Plant Extracts

For extraction compounds the lyophilized plant material was extracted in triplicates with 70% ethanol (1:5 w/v) in an ultrasonic bath (35 kHz) at 45 °C for 45 min each. The united extracts were filtrated through a filter paper and concentrated at 45 °C on a rotary vacuum evaporator (Laborota 4002, Heidolph Instruments GmbH & Co.KG, Germany). Due to the high presence of carbohydrates the extracts were further subjected to additional cleaning step, consisting of Waters 1525 Binary pump (Waters, Milford, MA, USA), controlled by Breeze 3.30 software and equipped with reverse-phase Supelco Discovery HS C18 (25 cm x 4.6 mm, 5 μm) column, thermostated at 26 °C. The extracts were dissolved in appropriate concentrations with methanol and filtrated through 0.45 μm syringe filters. The constituents were identified according to their retention time (Rt) and quantified according to calibration curve for each compound. For determination of triterpenes the method developed by Marchev et al. was applied. In brief, a mobile phase consisting of methanol and 0.1% formic acid (92:8) and 0.4 ml/min flow rate was used. The detection of the substances was monitored at 210 nm. For flavonoids analysis a gradient elution was applied. The mobile phases were 2.0% acetic acid (phase A) and methanol (phase B) with wavelength of detection 308 and 380 nm. Quercetin glycosides were detected at 380 nm by applying gradient elution with 2.0% acetic acid (phase A) and acetonitrile (phase B). Rosmarinic acid was detected at 327 nm using mobile phase of methanol:H2PO4:H2O = 50:0.3:49.7. The phenolic acid were quantified at 280 and 320 nm with mobile phase 2.0% acetic acid (phase A) and 0.5% acetic acid:acetonitrile (1:1). Detailed description and gradients of the mobile phase are described by Marchev et al.

Assay of total phenolics content

The total phenolic content (TPC) was determined by Kerina et al. To 0.1 ml of extract (1:10 diluted) 0.5 ml Folin-Ciocalteu reagent and 2.0 ml 10% Na2CO3 were added. After 10 min 1.0 ml from the mix was added to 4.0 ml of distilled water. The absorbance was read at 620 nm on spectrophotometer Spectrostar Nano (BMG, Ortenberg, Germany) against a blank sample containing water instead of extract. The phenolic amount was calculated through calibration curve with 0.01% solution of gallic acid and expressed as mg gallic acid equivalents per gram of extract (mg GAE/g extract).

Assay of total flavonoids content

The total flavonoids content was determined according to Zhishen et al. with minor modifications. To an appropriate diluted in DMSO extract 0.15 ml NaNO2 (5%) and 0.15 ml AlCl3 (10%) were added. Five minutes later 1.0 ml NaOH (1M) was added and after 6 more min the volume was adjusted to 5 ml with distilled H2O. The reaction was conducted for 30 min at ambient temperature and afterwards the absorbance was measured at 510 nm against blank sample, which contained distilled water instead of extract. The amount of flavonoids was calculated through a calibration curve with (+) - catechin and expressed as mg catechin equivalents per g extract (mg CE/g extract).

α-Glucosidase activity assay for inhibition tests of jujube ethanol extract

Yeast α-glucosidase has been frequently used to identify its inhibitors from medicinal plants. The method of Suresh et al. was employed with some modifications. The assay uses pNPG as substrate, which is hydrolyzed by α-glucosidase to release p-nitrophenol, a color agent that can be monitored at 405 nm. Briefly, 20 μl of a sample solution was mixed with 70 μl of the enzyme solution (1 unit/ml) in 0.1 M phosphate buffer (pH 6.8), since α-glucosidase is sensitive to different pH values, and incubated at 37 °C for 6 min under shaking. After incubation, 100 μl pNPG (0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mM) solution in the above buffer was added to initiate the colorimetric reaction at 37 °C. The
released p-nitrophenol was monitored at 405 nm every min for a total time of 30 min by a Spectrostar Nano (BMG, Ortenberg, Germany) 96 micro well plate reader against a blank sample without enzyme. DMSO without extracts was set up in parallel as a control and each experiment was performed in triplicates. One unit of enzyme activity was defined as the amount of enzyme that released one μmol of p-nitrophenol per minute under the assay conditions described.

α-Amylase activity assay for inhibition tests of jujube ethanol extract

The α-amylase activity was determined using the modified version of the method according to McDougall et al.20 and Grussu et al.21 Briefly, 50 μL of the extracts, which were dissolved in DMSO was mixed with 200 μL of the enzyme solution (0.5 U/mL) in 0.2 M sodium phosphate buffer (pH 6.9) and incubated at 37°C for 5 min. After incubation, 250 μL of the soluble starch in concentration 0.1, 0.5, 1, 1.3 1.5 % was added to initiate the enzyme reaction. 100 mg PAHBAH substance was dissolve successively with 0.5 M HCl and 0.5 M NaOH to give the working PAHBAH reagent. Triplicate samples (250 μL) of assays were taken at fixed times and added to 1.75 ml of PAHBAH reagent in a 2 mL tube. After heating for 15 min at 100 °C and cooling, the absorbance at 410 nm was measured by a spectrophotometer SPECTROstar Nano (BMG, Offenburg, Germany). Control tubes contained only DMSO, enzyme and substrate, while in positive controls acarbose replaced the plant extracts. Mixtures without enzyme, plant extract and acarbose served as blanks. One unit of enzyme activity was defined as the amount of enzyme that released one µmol of glucose per minute under the assay conditions described.

Kinetics of inhibition of jujube ethanol extract against α-amylase and α-glucosidase activities

The kinetics of inhibition of the ethanol extract of Z. jujuba against α-glucosidase and α-amylase activities were measured by increasing concentration of α-NPG (0.5 - 5.0 mM) and starch (0.1- 1.5 % respectively in the absence and presence of extract of Z. jujuba at concentrations of 0.66 and 1.33 mg.ml-1 for both α-glucosidase and α-amylase inhibitory assay. Acarbose at concentrations 0.66 and 1.33 mg.ml-1 was included as a positive control. The type of inhibition was determined by Lineweaver-Burk double reciprocal plot analysis of the data, which was calculated from the result according to Michaelis-Menten kinetics22. Each experiment was performed in triplicates. The inhibition of α-glucosidase and α-amylase by jujube extract was calculated according to the following formula: % Inhibition = [(EAc−EAE)/EAc] × 100 where EAc and EAE are the enzyme activity of the control sample and enzyme activity of jujube extract, respectively.

RESULTS AND DISCUSSIONS

The phytochemical content of 70% ethanol extract of Ziziphus jujuba fruits is presented on Table 1. Among all biologically active molecules, major characteristic constituents in fructus were triterpenes, such as oleanolic, ursolic and betulinic acid which concentration reached up to 20943.17±527.06 μg/g extract. These results are in agreement with those reported by WHO monographs on selected medicinal plants23 in fructus Zizyphi jujubae Mill. or Z. jujuba var. inermis Rehd. (Rhamnaceae). The presence of the terpenoids oleanolic, betulonic, zizyberenalic and betulimic acid in fruits of Z. jujuba are also reported by Lee et al.23 and Shoel et al.24. The investigated 70% ethanol extract had a total phenolic content of 21.62 ± 0.0265 mg/g extract. In total 11 phenolic acids were identified, among which rosmarinic (1174.26±29.55 μg/g) and sinapic acid (500.40±12.59 μg/g) were in the highest amounts. Total flavonoid content in the investigated extracts was 1.34 ± 0.017 mg/g extract and the concentration of the dominant flavonoids was as follow: myricetin (214.61±5.40 μg/g) > luteolin (69.75±1.76 μg/g) > quercetin (65.21±1.64 μg/g) > kaempferol (18.48±0.46) > apigenin (9.56±0.24) From the quercetin glycosides in high concentration could be distinguished rutin (3 046.89±76.68 μg/g) and hyperosid (94.76±2.38 μg/g). The identified phenolic compounds in our study correspond to that reported by San and Yildirim25 in the fruits of Z. jujuba. In the investigated fresh fruits from four different jujube genotypes it was determined the presence of catechin, epicatechin, rutin, as well as, caffeic, ferulic, chlorogenic and 4-hydroxybenzoic acid, which concentration varied in the different selections. One of the selections had significantly higher rutin content than the other ones. Some phenolics, such as chlorogenic and caffeic acid, catechin, epicatechin and rutin, were isolated from jujube fruit by Hudina et al.26. The presence of terpenes, phenolic acids and flavonoids in the investigated from us 70% ethanol is a prerequisite for a potential α-glucosidase inhibitory activity of Z. jujuba.

Inhibition of α-glucosidase activity from 70% ethanol extract of Z. jujuba

The inhibition of α-glucosidase, which catalyzes the hydrolysis of α-nitrophenyl-α-D-glucopyranoside was increasing with the increasing concentrations of the extract (Table 2). The type of α-glucosidase inhibition of the extract was determined according to Lineweaver-Burk. The obtained graphic is presented on Figure 1A. The linear regression equation of the control was y = 0.0743x + 0.0151 (R² = 0.9997). The corresponding equations for the extract concentrations 1.33 and 0.66 mg.ml-1 were y = 0.1916x + 0.1126 (R² = 0.9897) and y = 0.1625x + 0.0728 (R² = 0.9862) respectively. In the presence of different extract concentrations Km and Vmax values decreased and were different from that of the control sample (Table 2). In the primary graphic the obtained correlations were crossing in third quadrant. Therefore, the inhibition was non-competitive-uncompetitive mixed. This could be also confirmed by the values of the dissociation constant: KI (0.248 mg.ml-1) < K\textsubscript{K} (0.843 mg.ml-1), determined by the equations of the secondary graphics (Figure 1B, C). In the case of non-competitive-uncompetitive inhibition KI < K\textsubscript{K}. The lower KI (ESI) value than the (EI) is evidence for the higher affinity of the inhibitors in the extract to bind with ES- complex than the unbound enzyme. The results are summarized in Table 2.
Table 1: Content of phenolic acids, flavonoids and triterpenes in fruits of *Ziziphus jujube*.

<table>
<thead>
<tr>
<th>Comp.</th>
<th>Phenolic acids</th>
<th>Flavonoids and quercetin glycosides</th>
<th>Triterpenes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg/g extract</td>
<td>µg/g biomass</td>
<td>µg/g extract</td>
</tr>
<tr>
<td>3,4-diOH Benzoic acid</td>
<td>10.96±0.28</td>
<td>0.34±0.01</td>
<td>214.61±5.40</td>
</tr>
<tr>
<td>2-OH Benzoic acid</td>
<td>144.49±3.64</td>
<td>4.46±0.11</td>
<td>65.21±1.64</td>
</tr>
<tr>
<td>Chlorogenic acid</td>
<td>202.72±5.10</td>
<td>6.25±0.16</td>
<td>69.75±1.76</td>
</tr>
<tr>
<td>Vanillic acid</td>
<td>221.72±5.58</td>
<td>6.84±0.17</td>
<td>18.48±0.46</td>
</tr>
<tr>
<td>Caffeic acid</td>
<td>35.92±0.90</td>
<td>1.11±0.03</td>
<td>9.56±0.24</td>
</tr>
<tr>
<td>Syringic acid</td>
<td>181.81±4.58</td>
<td>5.61±0.14</td>
<td>3.046.89±76.68</td>
</tr>
<tr>
<td>p-Coumaric acid</td>
<td>26.31±0.66</td>
<td>0.81±0.02</td>
<td>94.76±2.38</td>
</tr>
<tr>
<td>Ferulic acid</td>
<td>69.41±1.75</td>
<td>2.14±0.05</td>
<td>7.56±2.57</td>
</tr>
<tr>
<td>Sinapic acid</td>
<td>500.40±12.59</td>
<td>15.43±0.39</td>
<td>5.62±0.14</td>
</tr>
<tr>
<td>Rosemary acid</td>
<td>1174.26±29.55</td>
<td>36.21±0.91</td>
<td>2.9043.17±527.06</td>
</tr>
<tr>
<td>Cinnamic acid</td>
<td>1.02±0.03</td>
<td>0.03±0.00</td>
<td>(0.84336 mg.ml⁻¹)</td>
</tr>
</tbody>
</table>

As a positive control in this study acarbose was used. Based on the Lineweaver-Burk primary graphic (Figure 2A), the linear regression equation of the control was $y = 0.0743x + 0.0151$ ($R^2 = 0.9997$), while at acarbose concentrations 0.66 and 1.33 mg.ml⁻¹, the respective equations were $y = 0.2572x + 0.0578$ ($R^2 = 0.9873$) and $y = 0.371x + 0.1382$ ($R^2 = 0.9751$). Both, the slopes and the vertical axis intercept increased with increasing acarbose concentration. In the primary graphic the obtained correlations were crossing in third quadrant. These results account for a noncompetitive - uncompetitive mixed. The dissociation constant determined by the equations of the secondary graphics (Figure 2B, C) for ESI-complex, KI (0.096 mg.ml⁻¹) and inhibitory constant for the EI-complex, K (0.333 mg.ml⁻¹), is evidence for the higher affinity of the acarbose to bind with ES- complex than the unbound enzyme. The constant of inhibition, K, is indication for the strength of the inhibitor. K, of acarbose (0.333 mg.ml⁻¹) had a lower value from the K, of the extract (0.84336 mg.ml⁻¹) (Table 2). This means that the inhibitory strength of the 70% ethanol extract was lower than that of acarbose but provoked stronger inhibition of α-glucosidase (79.46%) compared to acarbose (82.98%).

There are few reports that triterpenoids have α-glucosidase inhibitory activity. Kumar et al. confirmed that betulinic acid inhibited α-glucosidase activity with 52.2 ± 3.8% at concentration of 50 µg/ml. Ali et al. proved that oleanolic acid inhibited α-glucosidase uncompetitive. The flavonoid structure, the position and number of the hydroxyl groups were determining factors for α-glucosidase inhibition. According to Tadera et al. α-glucosidase inhibition of flavonoids increased by increasing the number of the hydroxyl groups in the B ring, while the substitution of the hydroxyl group at position 3 decreased the activity. In this regard the presence of triterpenoids and flavonoids as myricetin, quercetin, luteolin in studied extract are prerequisite for its inhibitory activity on α-glucosidase.
Among the phenolic acids, with the highest amount detected was the rosmarinic acid. This acid isolated from the methanol extract of *P. madagascariensis* had α-glucosidase inhibitory activity with $IC_{50} = 33.0 \pm 4.6$ µmol/l. Molecular docking is used very often in investigation of molecular structures and functions, as well as, screening for α-glucosidase inhibitors. This method was applied by Hyun et al. for investigation of flavonoids and phenolic acids, such as gallic, caffeic and ferulic acid. According to the energy of binding of these substances...
with α-glucosidase, they were determined as potential inhibitors of this enzyme.

Rutin was also detected in high amounts (3046.89±76.68 µg/g) in the investigated alcoholic extract. This flavonoid had mixed type of inhibition according to Hyun et al., as well as myricetin, quercetin and luteolin.

The α-glucosidase inhibition in presence of jujube extract could be due to inhibitory activity of the reported secondary metabolites. It should be considered that the extract contains diverse groups of chemical compounds, which results in the different mode of inhibition. It could be concluded that the high concentration of rutin (with mixed type of inhibition) and oleanolic acid (with uncompetitive type of inhibition) determine the noncompetitive-uncompetitive mixed type of α-glucosidase activity in the presence of 70% ethanol extract.

Inhibition of α-amylase activity from 70% ethanol extract of Z. jujuba

Based on the Lineweaver-Burk primary graphic (фиг 3А), the linear regression equation of the control was $y = 1.1312x + 1.1731$ ($R^2 = 0.9986$), while at extract concentration of 0.333 and 0.666 mg.ml$^{-1}$ they were $y = 1.5324x + 1.3704$ ($R^2 = 0.9997$) and $y = 2.0841x + 1.71$ ($R^2 = 0.9996$) respectively. The obtained lines were crossing in the 2nd quadrant. K_m values were increasing, while the V_{max} values were decreasing and were different from the values of the control (Table 3). It should be noted the minimum increase of K_m values with increasing the extract concentration. This fact reveals that the inhibitors have a weak impact towards the affinity to the substrate. In addition, the K_I value (1.426 mg.ml$^{-1}$) of ESI-complex is higher from the K_c value (0.791 mg.ml$^{-1}$) of the EI-complex. This means that the inhibitors in the extract have higher affinity to bind with the enzyme than the ESI-complex. These results account for a mixed competitive-non-competitive inhibition.

The inhibitory activity of acarbose on α-amylase is showed at Figure 4A. Based on the results of Lineweaver-Burk primary graphic at acarbose concentrations of 0.045 and 0.066 mg.ml$^{-1}$ the linear regression equations were $y = 1.6136x + 1.1746$ ($R^2 = 0.9991$) and $y = 1.8108x + 1.2198$ ($R^2 = 0.9982$). The slopes of the lines increased.

The obtained lines were crossing at one point on the ordinate. The K_m values were increasing with increasing the extract concentration, while the V_{max} values did not change (Table 3). The constant of inhibition for EI-complex was $K_i = 0.122$ mg.ml$^{-1}$. These results account for a competitive inhibition, which means that acarbose and the substrate compete in one and the same point in the enzyme molecule – the active center. Such type of inhibition is possible when the competitive inhibitors are structural analogues of the substrate. K_i value of acarbose had a lower value than K_i of the extract, that means that the inhibitors in the extract were weaker than the acarbose. The extract caused moderate mixed competitive - non-competitive inhibition (Table 3).

For large number of the identified from us constituents in the ethanol extract α-amylase inhibitory activity have been reported. Pentacyclic triterpenoids, such as oleanolic acid, betulinic acid, oleic acid, usnic acid, ursolic acid and usrorlic acid have been shown to inhibit α-amylase. From the flavonoids luteolin, myricetin and quercetin inhibited α-amylase effectively. According to Ng K., myricetin, exhibited inhibitory activity with 35.9% inhibition and according to Tadera et al., myricetin inhibited α-amylase activity with 64%. The phenolic acids, including gallic, caffeic, ferulic acid, isolated from Elusine coracana extracts revealed inhibitory activity to α-amylase with IC_{50} value of 23.05 mg/ml. Chethan et al. reported strong α-amylase inhibition of gallic (67.7%), vanillic (71.9%), trans-cinnamic acid (79.2%) and quercetin (73.5%). Therefore, it could be assumed that the inhibitory effect of 70% ethanol extract on pancreatic α-amylase may be related to these compounds. The mechanism of activity of phenolic acids (covalent binding with reactive nucleophile sites of α-amylase) and that of flavonoids (creation of hydrogen binding with OH groups in active side chains of the enzyme) is possible to explain the stronger affinity of the inhibitors from the extract to bind with the enzyme than the ES-complex. K_i has 1.8 times lower values than K_I ($K_i < K_I$). Chethan et al. reported for the same type of α-amylase inhibition of millet polyphenols. The knowledge of type of inhibition reveals the precise mechanisms of action of enzyme inhibitors.
In the literature, there are no kinetic surveys of *Z. jujuba* fruit extract proving its anti-diabetic potential. In present research the potential of these fruit extracts as inhibitor of the enzyme α-glucosidase and α-amylase was described by *K*_i value not by *IC*₅₀. The *IC*₅₀ value depends on concentrations of the enzyme, the inhibitor and the substrate along with other experimental conditions. *K*_i value is thermodynamic constant that is independent of the substrate but depends on the enzyme and inhibitor. Determination of the *K*_i value allows more easily to be compared the inhibitors determined by different surveys.

CONCLUSION

The enzyme inhibitors have an important role used as a control over the diseases and their treatment. Extract of *Ziziphus jujuba* (Rhamnaceae) possess anti-diabetic properties that could be useful in the development of herbal formulations, intended for prevention and treatment of diabetes mellitus type 2. The knowledge of type of inhibition reveals the precise mechanisms of action of enzyme inhibitors and determine their successfully application. The jujube fruit extract is a rich source of triterpenoids, with established multifactorial properties in vivo. The extract is rich in flavonoids and phenolic compounds that owe except enzyme and non-enzyme inhibitory mechanism acting in the digestive tract. Therefore, this extract could be used in the pharmaceutical industry for development of drug formulations.

ACKNOWLEDGMENT

This work was supported by Fund “Science”, University of Food Technology, Plovdiv.
REFERENCES