Characterization and Comparison of Three Species of the Genus Salacia.

Harinarayanan M K¹, Jayanthy A²*, Lubna S¹, Deepak M²

¹Department of Botany, Sree Krishna College, Guruvayoor, Thrissur, Kerala, 680102, India
²Centre for Medicinal Plants Research (CMPR), Arya Vaidya Sala, Kottakkal, Malappuram- 676503, Kerala, India.

Received: 31st Jan, 17; Revised 30th March, 17; Accepted: 16th April, 17; Available Online:25th April, 2017

ABSTRACT
Some of the plant species of the genus Salacia are considered as an important anti-diabetic drug in ayurveda. Among them S. chinensis, S. fruticosa and S. oblonga possess great medicinal importance, mostly because of its promising anti-diabetic activity. The increasing demand of this drug, resulted in a huge decline in its availability and it is replaced by spurious ones mainly because of lack of adequate quality standards. There is now a felt need to develop a systematic approach for the authentication of these plants and to develop well-designed methodologies for its standardization. The present study focused on the Pharmacopoeial parameters like pharmacognostical characterization and preliminary phytochemical screening of these three species, which were found to be sufficient to evaluate the raw material and can also be used as reference standards for the quality control/quality assurance purposes. The pharmacognostic study revealed that there are specific diagnostic features for distinguishing these three species among themselves and also from other related species. The external morphology of these three species are also shows variation in their colour, odour and taste. Both the species of Salacia ie, S. chinensis is having bitter taste and S. fruticosa is with astringent taste whereas S. oblonga has no characteristic taste of its own. The TLC profile showed similar pattern in S. chinensis and S. fruticosa whereas S. oblonga showed more band in the profile than that of the other two. This reveals that the S. chinensis and S. fruticosa having similar compounds responsible for therapeutic efficacy, whereas S. oblonga has more chemical constituents.

Keywords: Salacia chinensis, S. fruticosa,S. oblonga, Pharmacognostical, Phytochemical, TLC, anti-diabetic.

INTRODUCTION
Diabetes is the commonest metabolic disorder and its frequency is on the increase all over the world. In India, diabetes is the one of the leading cause of ill health, mainly by the adoption of western life styles which leads to increase in the consumption of fast food, alcohol and a sedentary mode of life. All the systems of medicines possess various types of approaches for curing the disorders related to diabetes. Administration of various medicines internally is one among them. Some of the plant species coming under the genus Salacia are considered as an important anti diabetic drug in Ayurveda and other systems of Indian medicine. The genus Salacia comes under the angiosperm family Celastraceae. Among them Salacia chinensis L., S. fruticosa Wall. and S. oblonga Wall. possess great medicinal importance, mainly because of the anti-diabetic activity. S. chinensis is a straggler and flowers are greenish-yellow in colour. It is distributed mainly in Indo-Malaysia and found in sacred groves and moist deciduous forests in Kerala. Roots of S. chinensis is used in diabetes, haemorrhoids, leucorrhoea, leprosy, skin diseases, wounds, ulcers, liver disorders and used for alleviating kapha and pitta, amenorrhoea, dysmenorrhoea, spermatothoea and hepatopathy¹². S. fruticosa is a climber with greenish-yellow flowers. This endemic species is distributed in evergreen, semi-evergreen forests, sacred groves of Western Ghats. Roots are useful in diabetes, liver disorders, ulcers and skin diseases. S. oblonga is a straggler with greenish-yellow flowers. It is distributed in India and Sri Lanka, in evergreen and semi-evergreen forests. Root bark is used in rheumatism, gonorrhoea, itches, asthma, and ear troubles, diabetes, hemorrhoids, leucorrhoea, leprosy, skin diseases, ulcers and flatulence³. Roots of Salacia spp. become one of the main ingredient in many of the ayurvedic antidiabetic formulations such as Amrithameharichooranam, Katakkkadiradikashyam, Narayanagulam, Nirgunyadigulika, Manasamithravatakam etc. Though these Salacia species are well known for their antidiabetic activity, some another species are available in the market under the common name of the drug pithika (Ekanayakam in Malayalam). Pharmacognosy, an applied science, is concerned with the study of crude drugs of plant and animal origin. It aims at a complete and systematic knowledge of crude drugs of vegetables, animals or mineral origin. It implies not only drugs but also includes knowledge of sources, their history, properties and uses, distribution, cultivation, collection and selection. In the pharmacognostical standardization of a plant-based raw drug, identification by macro and microscopic characters, physicochemical and photochemical (quantitative and qualitative) methods are the major steps.

*Author for Correspondence: jyananthiathikkal@yahoo.com
Macroscopic identification involves the morphological and organoleptic characterization of the crude drug. Microscopic characterization involves anatomical and powder characteristics. Morphological characters involve size, shape, texture, surface characters, and markings of the plant material. Appearance, hardness, odour, taste and nature of facture together constitute the organoleptic characters. Morphological and anatomical characters play a vital role in crude drug standardization. As stated by the Metcalfe and Chalk, microscopical methods are often necessary to establish the botanical identity of commercial samples of medicinal plants, timbers, fibers etc., and may play an important part in checking adulteration and substitution.

MATERIALS AND METHODS

Materials used
Plant materials were collected from various sacred groves of Thrissur and Malappuram Districts of Kerala State. The useful part i.e., roots were collected along with the plant and kept it for drying in shade. For anatomical studies roots were fixed in FAA (Formalin-Acetic acid-Alcohol mixture) immediately after collection.

Method of study
Botanical study
Material processing and slide preparation were carried out as per the Indian Pharmacopoeial standard methods. All the materials for anatomical study were fixed in FAA. Hand sections and microtome sections were taken and histological and histochemical staining was carried out as per standard methods. The sections were stained with safranine and fast green for general studies and Sudan black for oil, iodine for starch, Ferric chloride for tannin and KOH for antraquinone etc. Maceration was carried out by Jaffery's method. Quantitative values such as measurements of the xylem vessel elements and fibres were taken using micrometer scale. The data were subjected to statistical analysis. Photomicrographs were taken using ‘Canon PhotoSpot G3 camera, attached to the Zeiss microscope.

Phytochemical studies
Roots were shade dried and coarsely powdered. Physicochemical parameters such as moisture content,
water soluble extractive, alcohol soluble extractive, ash value and acid insoluble ash were studied as per the standard procedure. Powdered roots (5gm) were extracted with methanol using the soxhlet. The extracts were filtered, concentrated and made up to 10 ml. This extract was used for TLC profiling.

Thin layer Chromatography

TLC analysis of the methanicolic extract of the roots of the three species was done on pre-coated silica gel 60F254 plates (E. Merck) of uniform thickness of 0.2 mm using the solvent system Toluene: Chloroform: Methanol (8: 1: 1). The solvents used were Gr quality (E. Merck). The developed plate was derivatized using Analsaldehyde Sulphuric acid reagent. R_f value of major bands were determined.
Plate 2: Microscopic characters of *S. chinensis* root. A. TS of root x 200 B. Wood portion enlarged x 400. C. Cortex region enlarged x 400; D. Cork region enlarged x 400; E. Phloem region enlarged x 400; F. Longitudinal view of xylem, G. LS of cork. ck, cork; ct, cortex; ph, phloem; phf, phloem fibres; rcr, rosette crystals of calcium oxalate; sg, starch grains; tch, tracheids; v, vessels; xyf, xylem fibre; xyp, xylem parenchyma; xyr, xylem ray.

<table>
<thead>
<tr>
<th>Name of plant</th>
<th>Water soluble extractive %</th>
<th>Alcohol soluble extractive %</th>
<th>Total ash %</th>
<th>Acid ash %</th>
<th>Insoluble ash %</th>
<th>Moisture content %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.chinensis</td>
<td>10.86</td>
<td>13.54</td>
<td>3.33</td>
<td>2.18</td>
<td>9.96</td>
<td></td>
</tr>
<tr>
<td>S.oblonga</td>
<td>12.7</td>
<td>13.24</td>
<td>4.03</td>
<td>2.47</td>
<td>11.35</td>
<td></td>
</tr>
<tr>
<td>S.fruticosa</td>
<td>19.28</td>
<td>24.66</td>
<td>2.29</td>
<td>2.65</td>
<td>9.16</td>
<td></td>
</tr>
</tbody>
</table>
RESULT AND DISCUSSION

Taxonomy and morphology

Salacia chinensis Linn.

A small erect or straggling tree large, woody, climbing shrub found. Leaves ovate to lanceolate; flowers 2-6, clustered together on axillary tubercles, yellowish; fruit small globose, 1-2 cm in diameter, red when ripe one-seeded; seeds so rounded by an edible pulp. Ripe fruits are eaten9 (Plate 1 A & B).

Salacia fruticosa

S. fruticosa is a climber with greenish yellow coloured bark. It is endemic to Western Ghats and found in the evergreen, semi-evergreen forests, sacred groves and in plains10 (Plate 1 C&D).

Salacia oblonga

Plate 3: Microscopic characters of S. fruticosa root. A. TS of root x 200 B. Cork region enlarged x 400. C. Phloem region enlarged x 400; D. Cortex region enlarged x 400; E. Wood region enlarged x400; F. Longitudinal view of xylem elements, G. Central portion of the root x 400. ck, cork; ct, cortex, ph, phloem; phf, phloem fibres; rcr, rosette crystals of calcium oxalate; sg, starch grains; tch, tracheids; v, vessels; xyf, xylem fibre; xyp, xylem parenchyma; xyr, xylem ray.
Salacia oblonga Wall ex wight is a climbing shrub. Leaves ovate or ovate-lanceolate; flowers greenish yellow, in short congested cymes, fruits globose, 3 cm in diameter, tuberculate, light brown or orange when ripe, seeds 1-8, angular, imbedded in pulp\(^9\) (Plate 1 E&F).

Distribution

S. chinensis is distributed almost throughout India including Andaman and Nicobar Islands thriving along seashore and river banks as well as in forests at altitudes up to 750m\(^9,11\).
The plant *Salacia fruticosa* is widely distributed throughout India\(^1\). *S. oblonga* is a woody climber, distributed in Sri Lanka and southern regions of India\(^2\),\(^3\),\(^4\). It is also reported in other south-east Asian countries\(^5\). It is called as *Chundan* in Tamil and *Ponkoranti* in Malayalam. *S. oblonga* is found in the rain forests of Western Ghats from south Konkan to southwards.

Macroscopic and microscopic comparison of the roots of three species of *Salacia* were carried out and the results are shown in table-1 and plates 2-4.

In the comparative maceration study it was observed that roots of *S. fruticosa* have large vessels with a length of 394.28 ±187.89 µm and a width of 120.43 ± 58.68 µm and long fibres were also observed in *S. fruticosa* (487 ±161.19 µm) but the width of fibres is large in *S. chinensis* which was 18.28±5.47 µm. The dimensions of xylem vessels and fibres of the three *Salacia* species studied are given in table 2.

Table 4: Comparative R\(_f\) values of TLC Profile of three *Salacia* ssp.

<table>
<thead>
<tr>
<th>Salacia chinensis</th>
<th>Salacia oblonga</th>
<th>Salacia fruticosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(_f) value</td>
<td>Colour</td>
<td>R(_f) value</td>
</tr>
<tr>
<td>0.60</td>
<td>Dark green</td>
<td>0.67</td>
</tr>
<tr>
<td>0.80</td>
<td>Dark green</td>
<td>0.80</td>
</tr>
<tr>
<td>R(_f) values of Salacia ssp. Studied (UV at 366 nm)</td>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td>0.33</td>
<td>Brown yellow</td>
<td>0.39</td>
</tr>
<tr>
<td>0.66</td>
<td>Dark green</td>
<td>0.73</td>
</tr>
<tr>
<td>0.73</td>
<td>Light Blue</td>
<td>0.73</td>
</tr>
<tr>
<td>0.93</td>
<td>Dark blue</td>
<td>0.93</td>
</tr>
<tr>
<td>R(_f) values of Salacia ssp. Studied (After Derivatization)</td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td>0.48</td>
<td>Dark blue</td>
<td>0.54</td>
</tr>
<tr>
<td>0.59</td>
<td>Dark blue</td>
<td>0.59</td>
</tr>
<tr>
<td>0.59</td>
<td>Violet</td>
<td>0.61</td>
</tr>
<tr>
<td>0.70</td>
<td>Light Blue</td>
<td>0.70</td>
</tr>
<tr>
<td>0.78</td>
<td>Dark blue</td>
<td>0.83</td>
</tr>
<tr>
<td>0.87</td>
<td>Pale blue</td>
<td></td>
</tr>
</tbody>
</table>

The comparative study on physicochemical parameters revealed that *S. fruticosa* showed high values for water

soluble and alcohol soluble extractives and they were 19.28% and 24.66% respectively. Total ash value and moisture content were found to be high in *S. oblonga* which were 4.03% and 11.35% respectively, but the acid insoluble ash was high in *S. fruticosa* (2.65%) (Table 3).

Comparative TLC Profile of three Salacia spp.

From the comparative TLC of the three species of *Salacia* shows that the *S. chinensis* and *S. fruticosa* shows almost similar profile pattern, whereas *S. oblonga* shows more spots than the other two.

DISCUSSION

Comparative anatomical characters in the case of three species of *salacia*, that is *S. chinensis*, *S. fruticosa* and *S. oblonga*, which are employed as a raw – drug in the Ayurvedic medicine manufacturing process. The present study is a preliminary investigation on the anatomical and chemical differences between these three species. The observations are presented and discussed below under appropriate heads.

The root of *S. chinensis*, is dark yellow externally and internally light yellow in colour. It has a characteristic odour and bitter in taste. The T.S of *S. chinensis* root show, many layered, suberised cork, cells rectangular, highly thickened lower tangential walls, and multi storied cork cells are present. Starch cells are present in the cork region. Brown coloured contents are present in Medullary rays, in cortex region and in pericycle region. Prismatic and rosette crystals are present in cork and phloem. Cortex is filled with dark brown content.

The root of *S. fruticosa* is yellowish brown externally with circular striations and smooth. Characteristic odour with astringent taste is noted. The T.S shows that the cork cells are tangentially elongated rectangular cells with brown dark deposits in the outer most layers. Cells are thick walled. Starch grains are also present in cortex region. The presence of a powdery substance is also observed.

The root of *S. oblonga* pale yellow externally, with easily peelable bark, and cut end with yellow colour. No characteristic taste and odour is noted. T.S shows thick walled cork cells. Stone cells are present in the cortex, obligatory cells traverse through the cortex, which was not reported so far. Many of the cells contains red contents, starch grains can be compound or simple present. Rosette crystals are present in the cortex and phloem. Presence of prismatic crystals also observed in cortex.

The comparative maceration studies of these three species shows, *S. fruticosa* have large vessels with a length of 394.28 ±187.89 µm and a width of 120.43 ± 58.68 µm and long fibres were also observed in *S. fruticosa* (487 ±161.19 µm) but the width of fibres is large in *S. chinensis* which was 18.28±5.47 µm.

In the comparative study on physicochemical parameters revealed that *S. fruticosa* showed high values for water soluble and alcohol soluble extractives and they were 19.28% and 24.66% respectively. Total ash value and moisture content were found to be high in *S. oblonga* which were 4.03% and 11.35% respectively, but the acid insoluble ash was high again in *S. fruticosa* (2.65%).

From the comparative TLC of the three species of *Salacia* shows that the *S. chinensis* and *S. fruticosa* shows almost similar profile pattern, whereas *S. oblonga* shows more spots than the other two.

CONCLUSION

The three species of *Salacia* ie, *Salacia chinensis*, *Salacia fruticosa* and *Salacia oblonga* are used as an antidiabetic drug in ayurveda. The present study is a preliminary to analysis the anatomical and histochemical differences between the three species.

The external morphology of these three species is also dissimilar in their colour, odour and taste. Both the species of *Salacia*, *S. chinensis* is having bitter in taste and *S. fruticosa* is with astringent taste where as *S. oblonga* has no characteristic taste of its own.

The present study also showed that the three species show significant differences in histochemical and anatomical level. But the TLC shows similar profile pattern in *S. chinensis* and *S. fruticosa* wherever as *S. oblonga* shows more spots than the other two. This reveals that the *S. chinensis* and *S. fruticosa* having similar compounds responsible for therapeutic efficacy, where as *S. oblonga* has more chemical constituents and should keep apart from the other two species and cannot be used as substitute of the other two species.

ACKNOWLEDGEMENT

The authors are grateful to Centre for Medicinal Plants Research (CMPR), Arya Vaidya Sala, Kottakkal for providing laboratory facilities to carry out the work. We are thankful to Dr. Indira Balachandran, Project Director, and Dr. Remasree, Deputy Project Director, CMPR, Arya Vaidya Sala, Kottakkal for extending support and encouragement.

REFERENCES

